Reverse modeling of Methane emission spectrum using precomputed spectrum grids ============================================================================== The opacity calculators in ExoJAX are fully auto-differentiable. However, in some case, the precomputation of the spectrum and the interpolation of the grid model are useful to perform rapid reverse modeling. Here, we demonstrate the grid-based retrieval using ExoJAX. For this example, you might need a good GPU. .. code:: ipython3 from jax import config config.update("jax_enable_x64", True) .. code:: ipython3 import numpy as np import matplotlib.pyplot as plt from jax import random import jax.numpy as jnp from jax import vmap import pandas as pd import pkg_resources from exojax.spec.atmrt import ArtEmisPure from exojax.spec.api import MdbExomol from exojax.spec.opacalc import OpaPremodit from exojax.spec.contdb import CdbCIA from exojax.spec.opacont import OpaCIA from exojax.spec.response import ipgauss_sampling from exojax.spec.spin_rotation import convolve_rigid_rotation from exojax.spec import molinfo from exojax.spec.unitconvert import nu2wav from exojax.utils.grids import velocity_grid from exojax.utils.astrofunc import gravity_jupiter from exojax.utils.grids import wavenumber_grid from exojax.utils.instfunc import resolution_to_gaussian_std from exojax.test.data import SAMPLE_SPECTRA_CH4_NEW .. parsed-literal:: 2024-09-29 07:22:17.164712: W external/xla/xla/service/gpu/nvptx_compiler.cc:765] The NVIDIA driver's CUDA version is 12.2 which is older than the ptxas CUDA version (12.6.20). Because the driver is older than the ptxas version, XLA is disabling parallel compilation, which may slow down compilation. You should update your NVIDIA driver or use the NVIDIA-provided CUDA forward compatibility packages. /home/kawahara/exojax/src/exojax/spec/dtau_mmwl.py:14: FutureWarning: dtau_mmwl might be removed in future. warnings.warn("dtau_mmwl might be removed in future.", FutureWarning) .. code:: ipython3 filename = pkg_resources.resource_filename( 'exojax', 'data/testdata/' + SAMPLE_SPECTRA_CH4_NEW) dat = pd.read_csv(filename, delimiter=",", names=("wavenumber", "flux")) nusd = dat['wavenumber'].values flux = dat['flux'].values wavd = nu2wav(nusd) sigmain = 0.05 norm = 20000 nflux = flux / norm + np.random.normal(0, sigmain, len(wavd)) plt.plot(wavd, nflux) plt.show() .. image:: reverse_precompute_grid_files/reverse_precompute_grid_3_0.png We make the grid model using ArtEmissPure and MdbExomol. .. code:: ipython3 # set wavenumber grid for the model Nx = 7500 nu_grid, wav, res = wavenumber_grid(np.min(wavd) - 10.0, np.max(wavd) + 10.0, Nx, unit='AA', xsmode='premodit') Tlow = 400.0 Thigh = 1500.0 art = ArtEmisPure(nu_grid=nu_grid, pressure_top=1.e-5, pressure_btm=1.e2, nlayer=75) art.change_temperature_range(Tlow, Thigh) Mp = 33.2 Rinst = 100000. beta_inst = resolution_to_gaussian_std(Rinst) ## CH4 setting (PREMODIT) mdb = MdbExomol('.database/CH4/12C-1H4/YT10to10/', nurange=nu_grid, gpu_transfer=False) print('# of lines = ', len(mdb.nu_lines)) diffmode = 1 opa = OpaPremodit(mdb=mdb, nu_grid=nu_grid, diffmode=diffmode, auto_trange=[Tlow, Thigh], dit_grid_resolution=1.0) ## CIA setting cdbH2H2 = CdbCIA('.database/H2-H2_2011.cia', nu_grid) opcia = OpaCIA(cdb=cdbH2H2, nu_grid=nu_grid) mmw = 2.33 # mean molecular weight mmrH2 = 0.74 molmassH2 = molinfo.molmass_isotope('H2') vmrH2 = (mmrH2 * mmw / molmassH2) # VMR #settings before HMC vsini_max = 100.0 vr_array = velocity_grid(res, vsini_max) #given gravity, temperature exponent, MMR g = gravity_jupiter(Rp=0.88, Mp=33.2) alpha = 0.1 MMR_CH4 = 0.0059 .. parsed-literal:: xsmode = premodit xsmode assumes ESLOG in wavenumber space: xsmode=premodit ====================================================================== The wavenumber grid should be in ascending order. The users can specify the order of the wavelength grid by themselves. Your wavelength grid is in *** descending *** order ====================================================================== rtsolver: ibased Intensity-based n-stream solver, isothermal layer (e.g. NEMESIS, pRT like) HITRAN exact name= (12C)(1H)4 HITRAN exact name= (12C)(1H)4 radis engine = vaex => Downloading from http://www.exomol.com/db/CH4/12C-1H4/YT10to10/12C-1H4__YT10to10.def .. parsed-literal:: /home/kawahara/exojax/src/exojax/spec/unitconvert.py:62: UserWarning: Both input wavelength and output wavenumber are in ascending order. warnings.warn( /home/kawahara/exojax/src/exojax/utils/grids.py:144: UserWarning: Resolution may be too small. R=617160.1067701889 warnings.warn("Resolution may be too small. R=" + str(resolution), UserWarning) /home/kawahara/exojax/src/exojax/utils/molname.py:197: FutureWarning: e2s will be replaced to exact_molname_exomol_to_simple_molname. warnings.warn( /home/kawahara/exojax/src/exojax/utils/molname.py:91: FutureWarning: exojax.utils.molname.exact_molname_exomol_to_simple_molname will be replaced to radis.api.exomolapi.exact_molname_exomol_to_simple_molname. warnings.warn( /home/kawahara/exojax/src/exojax/utils/molname.py:63: UserWarning: No isotope number identified. warnings.warn("No isotope number identified.", UserWarning) /home/kawahara/exojax/src/exojax/utils/molname.py:91: FutureWarning: exojax.utils.molname.exact_molname_exomol_to_simple_molname will be replaced to radis.api.exomolapi.exact_molname_exomol_to_simple_molname. warnings.warn( /home/kawahara/exojax/src/exojax/utils/molname.py:63: UserWarning: No isotope number identified. warnings.warn("No isotope number identified.", UserWarning) /home/kawahara/exojax/src/exojax/spec/molinfo.py:28: UserWarning: exact molecule name is not Exomol nor HITRAN form. warnings.warn("exact molecule name is not Exomol nor HITRAN form.") /home/kawahara/exojax/src/exojax/spec/molinfo.py:29: UserWarning: No molmass available warnings.warn("No molmass available", UserWarning) .. parsed-literal:: => Downloading from http://www.exomol.com/db/CH4/12C-1H4/YT10to10/12C-1H4__YT10to10.pf => Downloading from http://www.exomol.com/db/CH4/12C-1H4/YT10to10/12C-1H4__YT10to10.states.bz2 => Downloading from http://www.exomol.com/db/CH4/12C-1H4/12C-1H4__H2.broad => Downloading from http://www.exomol.com/db/CH4/12C-1H4/12C-1H4__He.broad => Downloading from http://www.exomol.com/db/CH4/12C-1H4/12C-1H4__air.broad Note: Caching states data to the vaex format. After the second time, it will become much faster. Molecule: CH4 Isotopologue: 12C-1H4 Background atmosphere: H2 ExoMol database: None Local folder: .database/CH4/12C-1H4/YT10to10 Transition files: => File 12C-1H4__YT10to10__06000-06100.trans => Downloading from http://www.exomol.com/db/CH4/12C-1H4/YT10to10/12C-1H4__YT10to10__06000-06100.trans.bz2 => Caching the *.trans.bz2 file to the vaex (*.h5) format. After the second time, it will become much faster. => You can deleted the 'trans.bz2' file by hand. => File 12C-1H4__YT10to10__06100-06200.trans => Downloading from http://www.exomol.com/db/CH4/12C-1H4/YT10to10/12C-1H4__YT10to10__06100-06200.trans.bz2 => Caching the *.trans.bz2 file to the vaex (*.h5) format. After the second time, it will become much faster. => You can deleted the 'trans.bz2' file by hand. Broadening code level: a1 .. parsed-literal:: /home/kawahara/exojax/src/radis/radis/api/exomolapi.py:685: AccuracyWarning: The default broadening parameter (alpha = 0.0488 cm^-1 and n = 0.4) are used for J'' > 16 up to J'' = 40 warnings.warn( .. parsed-literal:: # of lines = 80505310 .. parsed-literal:: /home/kawahara/exojax/src/exojax/spec/opacalc.py:215: UserWarning: dit_grid_resolution is not None. Ignoring broadening_parameter_resolution. warnings.warn( .. parsed-literal:: OpaPremodit: params automatically set. default elower grid trange (degt) file version: 2 Robust range: 393.5569458240504 - 1647.2060977798953 K OpaPremodit: Tref_broadening is set to 774.5966692414833 K # of reference width grid : 2 # of temperature exponent grid : 2 .. parsed-literal:: uniqidx: 0it [00:00, ?it/s] .. parsed-literal:: Premodit: Twt= 483.67862012986944 K Tref= 1171.1891720056747 K Making LSD:|####################| 100% Making LSD:|####################| 100% H2-H2 Because we would like to infer T0 and the rotational broadenings and so on, we define the raw spectrum model as a function of T0. .. code:: ipython3 def raw_spectrum_model(T0): #T-P model Tarr = art.powerlaw_temperature(T0, alpha) #molecule xsmatrix = opa.xsmatrix(Tarr, art.pressure) mmr_arr = art.constant_mmr_profile(MMR_CH4) dtaumCH4 = art.opacity_profile_xs(xsmatrix, mmr_arr, opa.mdb.molmass, g) #continuum logacia_matrix = opcia.logacia_matrix(Tarr) dtaucH2H2 = art.opacity_profile_cia(logacia_matrix, Tarr, vmrH2, vmrH2, mmw, g) dtau = dtaumCH4 + dtaucH2H2 F0 = art.run(dtau, Tarr) / norm return F0 Then, we make a grid model of emission spectra as a function of T0. The spectrum is generated via the interpolation of the grid, i.e. jnp.interp. The spectrum has a dimension of wavenumber. So, we need to ‘vmap’ for jnp.interp. .. code:: ipython3 # compute F0 grid given T0 grid Ngrid = 200 # delta T = 1 K T0_grid = jnp.linspace(1200, 1400, Ngrid) import tqdm F0_grid = [] for T0 in tqdm.tqdm(T0_grid, desc="computing grid"): F0 = raw_spectrum_model(T0) F0_grid.append(F0) F0_grid = jnp.array(F0_grid).T vmapinterp = vmap(jnp.interp, (None, None, 0)) .. parsed-literal:: computing grid: 100%|██████████| 200/200 [00:02<00:00, 80.78it/s] .. code:: ipython3 #PPL import import arviz from numpyro.diagnostics import hpdi from numpyro.infer import Predictive from numpyro.infer import MCMC, NUTS import numpyro import numpyro.distributions as dist Define a model for PPL. .. code:: ipython3 def model_c(nu1, y1): A = numpyro.sample('A', dist.Uniform(0.5, 2.0)) RV = numpyro.sample('RV', dist.Uniform(5.0, 15.0)) T0 = numpyro.sample('T0', dist.Uniform(1100.0, 1300.0)) vsini = numpyro.sample('vsini', dist.Uniform(15.0, 25.0)) F0 = A * vmapinterp(T0, T0_grid, F0_grid) Frot = convolve_rigid_rotation(F0, vr_array, vsini, u1=0.0, u2=0.0) mu = ipgauss_sampling(nu1, nu_grid, Frot, beta_inst, RV, vr_array) numpyro.sample('y1', dist.Normal(mu, sigmain), obs=y1) Run HMC-NUTS! It took only within 2 minutes using my laptop (RTX 3080). .. code:: ipython3 rng_key = random.PRNGKey(0) rng_key, rng_key_ = random.split(rng_key) num_warmup, num_samples = 1000, 2000 #kernel = NUTS(model_c, forward_mode_differentiation=True) kernel = NUTS(model_c, forward_mode_differentiation=False) mcmc = MCMC(kernel, num_warmup=num_warmup, num_samples=num_samples) mcmc.run(rng_key_, nu1=nusd, y1=nflux) mcmc.print_summary() .. parsed-literal:: sample: 100%|██████████| 3000/3000 [03:15<00:00, 15.32it/s, 127 steps of size 2.96e-02. acc. prob=0.94] .. parsed-literal:: mean std median 5.0% 95.0% n_eff r_hat A 1.18 0.07 1.17 1.07 1.28 161.00 1.01 RV 10.48 0.40 10.46 9.77 11.09 1245.61 1.00 T0 1232.39 18.34 1234.97 1216.98 1254.07 87.59 1.02 vsini 19.52 0.67 19.54 18.32 20.49 757.10 1.00 Number of divergences: 0 .. code:: ipython3 # SAMPLING posterior_sample = mcmc.get_samples() pred = Predictive(model_c, posterior_sample, return_sites=['y1']) predictions = pred(rng_key_, nu1=nusd, y1=None) median_mu1 = jnp.median(predictions['y1'], axis=0) hpdi_mu1 = hpdi(predictions['y1'], 0.9) # PLOT fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(20, 6.0)) ax.plot(wavd[::-1], median_mu1, color='C0') ax.plot(wavd[::-1], nflux, '+', color='black', label='data') ax.fill_between(wavd[::-1], hpdi_mu1[0], hpdi_mu1[1], alpha=0.3, interpolate=True, color='C0', label='90% area') plt.xlabel('wavelength ($\AA$)', fontsize=16) plt.legend(fontsize=16) plt.tick_params(labelsize=16) plt.savefig("pred_diffmode" + str(diffmode) + ".png") plt.show() .. image:: reverse_precompute_grid_files/reverse_precompute_grid_15_0.png .. code:: ipython3 pararr = ['A', 'T0', 'vsini', 'RV'] arviz.plot_pair(arviz.from_numpyro(mcmc), kind='kde', divergences=False, marginals=True) plt.savefig("corner_diffmode" + str(diffmode) + ".png") plt.show() .. image:: reverse_precompute_grid_files/reverse_precompute_grid_16_0.png