Comparing HITEMP and ExoMol --------------------------- .. code:: ipython3 from exojax.spec.hitran import line_strength, doppler_sigma, gamma_hitran, gamma_natural from exojax.spec.exomol import gamma_exomol from exojax.spec import api import numpy as np import matplotlib.pyplot as plt First of all, set a wavenumber bin in the unit of wavenumber (cm-1). Here we set the wavenumber range as :math:`1000 \le \nu \le 10000` (1/cm) with the resolution of 0.01 (1/cm). We call moldb instance with the path of par file. If the par file does not exist, moldb will try to download it from HITRAN website. .. code:: ipython3 # Setting wavenumber bins and loading HITEMP database wav = np.linspace(22930.0, 23000.0, 4000, dtype=np.float64) # AA nus = 1.0e8 / wav[::-1] # cm-1 .. code:: ipython3 mdbCO_HITEMP = api.MdbHitemp( "CO", nus, isotope=1, gpu_transfer=True ) # we use istope=1 for comparison .. parsed-literal:: radis engine = vaex Downloading 05_HITEMP2019.par.bz2 for CO (1/1). Download complete. Parsing CO database to /home/kawahara/exojax/documents/tutorials/CO-05_HITEMP2019.hdf5 .. code:: ipython3 emf = "CO/12C-16O/Li2015" # this is isotope=1 12C-16O mdbCO_Li2015 = api.MdbExomol(emf, nus, gpu_transfer=True) .. parsed-literal:: /home/kawahara/exojax/src/exojax/utils/molname.py:197: FutureWarning: e2s will be replaced to exact_molname_exomol_to_simple_molname. warnings.warn( /home/kawahara/exojax/src/exojax/utils/molname.py:91: FutureWarning: exojax.utils.molname.exact_molname_exomol_to_simple_molname will be replaced to radis.api.exomolapi.exact_molname_exomol_to_simple_molname. warnings.warn( /home/kawahara/exojax/src/exojax/utils/molname.py:91: FutureWarning: exojax.utils.molname.exact_molname_exomol_to_simple_molname will be replaced to radis.api.exomolapi.exact_molname_exomol_to_simple_molname. warnings.warn( .. parsed-literal:: HITRAN exact name= (12C)(16O) radis engine = vaex Molecule: CO Isotopologue: 12C-16O Background atmosphere: H2 ExoMol database: None Local folder: CO/12C-16O/Li2015 Transition files: => File 12C-16O__Li2015.trans Broadening code level: a0 .. parsed-literal:: /home/kawahara/exojax/src/radis/radis/api/exomolapi.py:685: AccuracyWarning: The default broadening parameter (alpha = 0.07 cm^-1 and n = 0.5) are used for J'' > 80 up to J'' = 152 warnings.warn( Define molecular weight of CO (:math:`\sim 12+16=28`), temperature (K), and pressure (bar). Also, we here assume the 100 % CO atmosphere, i.e. the partial pressure = pressure. .. code:: ipython3 from exojax.spec import molinfo molecular_mass = molinfo.molmass("CO") # molecular weight Tfix = 1300.0 # we assume T=1300K Pfix = 0.99 # we compute P=1 bar=0.99+0.1 Ppart = 0.01 # partial pressure of CO. here we assume a 1% CO atmosphere (very few). partition function ratio :math:`q(T)` is defined by :math:`q(T) = Q(T)/Q(T_{ref})`; :math:`T_{ref}`\ =296 K Here, we use the partition function from HAPI .. code:: ipython3 # mdbCO_HITEMP.ExomolQT(emf) #use Q(T) from Exomol/Li2015 from exojax.utils.constants import Tref_original qt_HITEMP = mdbCO_HITEMP.qr_interp(1, Tfix, Tref_original) qt_Li2015 = mdbCO_Li2015.qr_interp(Tfix, Tref_original) Let us compute the line strength S(T) at temperature of Tfix. :math:`S (T;s_0,\nu_0,E_l,q(T)) = S_0 \frac{Q(T_{ref})}{Q(T)} \frac{e^{- h c E_l /k_B T}}{e^{- h c E_l /k_B T_{ref}}} \frac{1- e^{- h c \nu /k_B T}}{1-e^{- h c \nu /k_B T_{ref}}}= q_r(T)^{-1} e^{ s_0 - c_2 E_l (T^{-1} - T_{ref}^{-1})} \frac{1- e^{- c_2 \nu_0/ T}}{1-e^{- c_2 \nu_0/T_{ref}}}` :math:`s_0=\log_{e} S_0` : logsij0 :math:`\nu_0`: nu_lines :math:`E_l` : elower Why the input is :math:`s_0 = \log_{e} S_0` instead of :math:`S_0` in SijT? This is because the direct value of :math:`S_0` is quite small and we need to use float32 for jax. .. code:: ipython3 Sij_HITEMP = line_strength( Tfix, mdbCO_HITEMP.logsij0, mdbCO_HITEMP.nu_lines, mdbCO_HITEMP.elower, qt_HITEMP, Tref_original, ) Sij_Li2015 = line_strength( Tfix, mdbCO_Li2015.logsij0, mdbCO_Li2015.nu_lines, mdbCO_Li2015.elower, qt_Li2015, Tref_original, ) Then, compute the Lorentz gamma factor (pressure+natural broadening) :math:`\gamma_L = \gamma^p_L + \gamma^n_L` where the pressure broadning (HITEMP) :math:`\gamma^p_L = (T/296K)^{-n_{air}} [ \alpha_{air} ( P - P_{part})/P_{atm} + \alpha_{self} P_{part}/P_{atm}]` :math:`P_{atm}`: 1 atm in the unit of bar (i.e. = 1.01325) or the pressure broadning (ExoMol) $:raw-latex:`\gamma`^p_L = :raw-latex:`\alpha`\ *{ref} ( T/T*\ {ref} )^{-n\_{texp}} ( P/P\_{ref}), $ and the natural broadening :math:`\gamma^n_L = \frac{A}{4 \pi c}` .. code:: ipython3 gammaL_HITEMP = gamma_hitran( Pfix, Tfix, Ppart, mdbCO_HITEMP.n_air, mdbCO_HITEMP.gamma_air, mdbCO_HITEMP.gamma_self, ) + gamma_natural(mdbCO_HITEMP.A) gammaL_Li2015 = gamma_exomol( Pfix, Tfix, mdbCO_Li2015.n_Texp, mdbCO_Li2015.alpha_ref ) + gamma_natural(mdbCO_Li2015.A) Thermal broadening :math:`\sigma_D^{t} = \sqrt{\frac{k_B T}{M m_u}} \frac{\nu_0}{c}` .. code:: ipython3 # thermal doppler sigma sigmaD_HITEMP = doppler_sigma(mdbCO_HITEMP.nu_lines, Tfix, molecular_mass) sigmaD_Li2015 = doppler_sigma(mdbCO_Li2015.nu_lines, Tfix, molecular_mass) Then, the line center… In HITRAN database, a slight pressure shift can be included using :math:`\delta_{air}`: :math:`\nu_0(P) = \nu_0 + \delta_{air} P`. But this shift is quite a bit. .. code:: ipython3 # line center nu0_HITEMP = mdbCO_HITEMP.nu_lines nu0_Li2015 = mdbCO_Li2015.nu_lines We use Direct LFP. .. code:: ipython3 from exojax.spec.initspec import init_lpf from exojax.spec.lpf import xsvector numatrix_HITEMP = init_lpf(mdbCO_HITEMP.nu_lines, nus) xsv_HITEMP = xsvector(numatrix_HITEMP, sigmaD_HITEMP, gammaL_HITEMP, Sij_HITEMP) numatrix_Li2015 = init_lpf(mdbCO_Li2015.nu_lines, nus) xsv_Li2015 = xsvector(numatrix_Li2015, sigmaD_Li2015, gammaL_Li2015, Sij_Li2015) .. code:: ipython3 fig = plt.figure(figsize=(10, 4)) ax = fig.add_subplot(111) plt.plot(wav[::-1], xsv_HITEMP, lw=2, label="HITEMP2019") plt.plot(wav[::-1], xsv_Li2015, lw=2, ls="dashed", label="Exomol w/ .broad") plt.xlim(22970, 22976) plt.xlabel("wavelength ($\AA$)", fontsize=14) plt.ylabel("cross section ($cm^{2}$)", fontsize=14) plt.legend(loc="upper left", fontsize=14) plt.tick_params(labelsize=12) plt.savefig("co_comparison.pdf", bbox_inches="tight", pad_inches=0.0) plt.savefig("co_comparison.png", bbox_inches="tight", pad_inches=0.0) plt.title("T=1300K,P=1bar") plt.show() .. image:: Comparing_HITEMP_and_ExoMol_files/Comparing_HITEMP_and_ExoMol_20_0.png