CIA coefficient =============== Collisional Induced Absorption (CIA) refers to the phenomenon where temporary interactions between molecules during collisions induce a transient dipole moment, enabling the absorption of radiation that would not occur in isolated molecules. This mechanism is particularly significant in environments with non-polar molecules, such as H22 and He, where typical dipole-induced transitions are absent. In the context of planetary and brown dwarf atmospheres, CIA is particularly important as a source of continuum opacity in the spectra of hydrogen-rich gas planets. In ExoJAX, the ``CdbCIA`` class can be used for database I/O to access CIA data provided by HITRAN. For examples of actual usage, please refer to resources such as the `get started `__ guide. .. code:: ipython3 from exojax.utils.grids import wavenumber_grid nu_grid, wav, res = wavenumber_grid(5000, 50000, 1000, unit="AA", xsmode="lpf") from exojax.spec import contdb cdbH2H2 = contdb.CdbCIA(".database/H2-H2_2011.cia", nu_grid) .. parsed-literal:: xsmode = lpf xsmode assumes ESLOG in wavenumber space: xsmode=lpf ====================================================================== The wavenumber grid should be in ascending order. The users can specify the order of the wavelength grid by themselves. Your wavelength grid is in *** descending *** order ====================================================================== H2-H2 For opacity calculations, the `OpaCIA <../exojax/exojax.spec.html#exojax.spec.opacont.OpaCIA>`__ class is available. .. code:: ipython3 from exojax.spec.opacont import OpaCIA opacia = OpaCIA(cdbH2H2, nu_grid=nu_grid) Let’s calculate (the logarithm of) the CIA absorption coefficient at three different temperatures. To compute them all at once, you can use ``opa.logacia_matrix``. (If you want to calculate it for a single temperature, you can use ``opa.logacia_vector`` instead.) .. code:: ipython3 import jax.numpy as jnp Tfix = jnp.array([1000.0, 1300.0, 1600.0]) lc = opacia.logacia_matrix(Tfix) .. code:: ipython3 import matplotlib.pyplot as plt plt.style.use("bmh") for i in range(0, len(Tfix)): plt.plot(wav, lc[i, :], lw=1, label=str(int(Tfix[i])) + " K") plt.axvspan(22876.0, 23010.0, alpha=0.3, color="green") plt.xlabel("wavelength ($\\AA$)") plt.ylabel("absorption coefficient ($cm^5$)") plt.legend() plt.savefig("cia.png") .. image:: CIA_opacity_files/CIA_opacity_7_0.png In practice, this simply performs interpolation within the CIA database grid. ``cdb.tcia`` contains the temperature axis, ``cdb.nucia`` holds the wavenumber values, and ``cdb.logac`` stores the logarithmic absorption coefficients. .. code:: ipython3 from exojax.spec.hitrancia import interp_logacia_vector lc = interp_logacia_vector(Tfix, nu_grid, cdbH2H2.nucia, cdbH2H2.tcia, cdbH2H2.logac).T