Foward Modeling of Jupiter-like Ammonia Clouds and Its Reflection Spectrum ========================================================================== Note: To run this tutorial, you need to install PyMieScatt. ``pip install PyMieScatt`` See https://pymiescatt.readthedocs.io/en/latest/ .. code:: ipython3 import jax.numpy as jnp import numpy as np Sets the wavenumber range and the atmosphere model .. code:: ipython3 from exojax.utils.grids import wavenumber_grid N = 10000 nus, wav, res = wavenumber_grid(10**3, 10**4, N, xsmode="premodit") from exojax.spec.atmrt import ArtReflectPure from exojax.utils.astrofunc import gravity_jupiter art = ArtReflectPure(nu_grid=nus, pressure_btm=1.0e2, pressure_top=1.0e-3, nlayer=100) art.change_temperature_range(80.0, 400.0) Tarr = art.powerlaw_temperature(150.0, 0.2) Parr = art.pressure mu = 2.3 # mean molecular weight gravity = gravity_jupiter(1.0, 1.0) .. parsed-literal:: xsmode = premodit xsmode assumes ESLOG in wavenumber space: mode=premodit ====================================================================== The wavenumber grid should be in ascending order. The users can specify the order of the wavelength grid by themselves. Your wavelength grid is in *** descending *** order ====================================================================== .. parsed-literal:: /home/kawahara/exojax/src/exojax/utils/grids.py:142: UserWarning: Resolution may be too small. R=4342.510524550615 warnings.warn('Resolution may be too small. R=' + str(resolution), /home/kawahara/exojax/src/exojax/spec/dtau_mmwl.py:14: FutureWarning: dtau_mmwl might be removed in future. warnings.warn("dtau_mmwl might be removed in future.", FutureWarning) ``pdb`` is a class for particulates databases. We here use ``PdbCloud`` for NH3, i.e. ``pdb`` for the ammonia cloud. PdbCloud uses the refraction (refractive) indice given by VIRGA. The precomputed grid of the Mie parameters assuming a log-normal distribution is called ``miegrid``. This can be computed pdb.generate_miegrid if you do not have it. To compute ``miegrid``, we use PyMieScatt as a calculator. You can also choose not to use ``miegrid``. Instead, we compute the Mie parameters using ``PyMieScatt`` one by one. This mode cannot be used for the retrieval, but is useful for a one-time modeling, (a.k.a forward modeling) of the spectrum. Also, ``amp`` is a class for atmospheric micorphysics. AmpAmcloud is the class for the Akerman and Marley 2001 cloud model (AM01). We adopt the background atmosphere to hydorogen atmosphere. .. code:: ipython3 from exojax.spec.pardb import PdbCloud from exojax.atm.atmphys import AmpAmcloud pdb_nh3 = PdbCloud("NH3") #pdb_nh3.generate_miegrid() # when you use the miegrid #pdb_nh3.load_miegrid() # when you use the miegrid amp_nh3 = AmpAmcloud(pdb_nh3,bkgatm="H2") amp_nh3.check_temperature_range(Tarr) .. parsed-literal:: .database/particulates/virga/virga.zip exists. Remove it if you wanna re-download and unzip. Refractive index file found: .database/particulates/virga/NH3.refrind Miegrid file does not exist at .database/particulates/virga/miegrid_lognorm_NH3.mg.npz Generate miegrid file using pdb.generate_miegrid if you use Mie scattering .. parsed-literal:: /home/kawahara/exojax/src/exojax/atm/atmphys.py:50: UserWarning: min temperature 80.0 K is smaller than min(vfactor t range) 179.10000610351562 K warnings.warn( The substance density of the condensate is given by ``condensate_substance_density``. Do not confuse it with the density of the condensates in the atmosphere. .. code:: ipython3 rhoc = pdb_nh3.condensate_substance_density #g/cc Sets the parameters in the AM01 cloud model. ``calc_ammodel`` method computes the vertical distribution of ``rg`` and the condensate volume mixing ratio. .. code:: ipython3 from exojax.utils.zsol import nsol from exojax.atm.mixratio import vmr2mmr from exojax.spec.molinfo import molmass_isotope n = nsol() #solar abundance abundance_nh3 = n["N"] molmass_nh3 = molmass_isotope("NH3", db_HIT=False) fsed = 10. sigmag = 2.0 Kzz = 1.e4 MMRbase_nh3 = vmr2mmr(abundance_nh3, molmass_nh3, mu) rg_layer, MMRc = amp_nh3.calc_ammodel(Parr, Tarr, mu, molmass_nh3, gravity, fsed, sigmag, Kzz, MMRbase_nh3) The following is just to convert MMR to g/L. .. code:: ipython3 from exojax.atm.idealgas import number_density from exojax.utils.constants import m_u fac = molmass_nh3*m_u*number_density(Parr,Tarr)*1.e3 #g/L Plots rg, MMR, and the cloud density (g/L). Note that the cloud density agrees with Figure 2 of HU ApJ 887, 166 (2019) .. code:: ipython3 import matplotlib.pyplot as plt fig = plt.figure(figsize=(15,5)) ax = fig.add_subplot(131) plt.plot(rg_layer,Parr) plt.xlabel("rg (cm)") plt.ylabel("pressure (bar)") plt.yscale("log") ax.invert_yaxis() ax = fig.add_subplot(132) plt.plot(MMRc,Parr) plt.xlabel("condensate MMR") plt.yscale("log") plt.xscale("log") plt.xlim(1e-12, 1e-2) ax.invert_yaxis() ax = fig.add_subplot(133) plt.plot(fac*MMRc,Parr) plt.xlabel("condensate density g/L") plt.yscale("log") plt.xscale("log") plt.xlim(1e-8, 1e-2) ax.invert_yaxis() .. image:: Jupiter_cloud_model_using_amp_files/Jupiter_cloud_model_using_amp_14_0.png ``rg`` is almost constant through the vertical distribution. So, let’s set a mean value here. If you’ve already generated the miegrid, ``miegrid_interpolated_value`` method interpolates the original parameter set given by MiQ_lognormal in PyMieScatt. See https://pymiescatt.readthedocs.io/en/latest/forward.html#Mie_Lognormal. The number of the original parameters are seven, Bext, Bsca, Babs, G, Bpr, Bback, and Bratio. If not yet, ``opa.mieparams_vector_direct_from_pymiescatt`` directly calls the PyMieScatt and computes the Mie parameters. .. code:: ipython3 rg = 1e-5 Plots the extinction coefficient for instance (index=0) and some approximation from the Kevin Heng’s textbook . | To handle the opacity for Mie scattering, we call ``OpaMie`` class as ``opa``. | The mie parameters can be derived by ``mieparams_vector`` method, which returns :math:`\beta_0`: the extinction coefficient of the reference number density :math:`N_0`, :math:`\omega`: a single scattering albedo , and :math:`g`: the asymmetric parameter. .. code:: ipython3 from exojax.spec.opacont import OpaMie opa = OpaMie(pdb_nh3, nus) #sigma_extinction, sigma_scattering, asymmetric_factor = opa.mieparams_vector(rg,sigmag) # if using MieGrid sigma_extinction, sigma_scattering, asymmetric_factor = opa.mieparams_vector_direct_from_pymiescatt(rg, sigmag) .. parsed-literal:: 100%|██████████| 131/131 [00:28<00:00, 4.59it/s] .. code:: ipython3 # plt.plot(pdb_nh3.refraction_index_wavenumber, miepar[50,:,0]) fig = plt.figure(figsize=(10,5)) ax = fig.add_subplot(311) plt.plot(nus, asymmetric_factor, color="black") plt.xscale("log") plt.ylabel("$g$") ax = fig.add_subplot(312) plt.plot(nus, sigma_scattering/sigma_extinction, label="single scattering albedo", color="black") plt.xscale("log") plt.ylabel("$\\omega$") ax = fig.add_subplot(313) plt.plot(nus, sigma_extinction, label="ext", color="black") plt.xscale("log") plt.yscale("log") plt.xlabel("wavenumber (cm-1)") plt.ylabel("$\\beta_0$") plt.savefig("miefig.png") .. image:: Jupiter_cloud_model_using_amp_files/Jupiter_cloud_model_using_amp_20_0.png Reflection spectrum ------------------- The opacity of the lognormal cloud model can be computed using ``opacity_profile_cloud_lognormal`` method in ``art``. .. code:: ipython3 dtau = art.opacity_profile_cloud_lognormal(sigma_extinction, rhoc, MMRc, rg, sigmag, gravity) To compute the reflection spectrum, we need the single scattering albedo, asymmetric parameter (known as g, but confusing from gravity), and the surface reflectivity. .. code:: ipython3 single_scattering_albedo = sigma_scattering[None,:]/sigma_extinction[None,:] + np.zeros((len(art.pressure), len(nus))) asymmetric_parameter = asymmetric_factor + np.zeros((len(art.pressure), len(nus))) reflectivity_surface = np.zeros(len(nus)) The incoming flux is normalized to 1. So, the output should be refelectivity. .. code:: ipython3 incoming_flux = np.ones(len(nus)) Fr = art.run(dtau,single_scattering_albedo,asymmetric_parameter,reflectivity_surface,incoming_flux) Here are the results. .. code:: ipython3 fig = plt.figure(figsize=(15,7)) ax = fig.add_subplot(411) plt.plot(nus, asymmetric_factor, color="black") plt.xscale("log") plt.ylabel("$g$") ax = fig.add_subplot(412) plt.plot(nus, sigma_scattering/sigma_extinction, label="single scattering albedo", color="black") plt.xscale("log") plt.ylabel("$\\omega$") ax = fig.add_subplot(413) plt.plot(nus, sigma_extinction, label="ext", color="black") plt.xscale("log") plt.yscale("log") plt.xlabel("wavenumber (cm-1)") plt.ylabel("$\\beta_0$") ax = fig.add_subplot(414) plt.plot(nus,Fr) plt.xscale("log") plt.ylabel("Reflectivity") plt.xlabel("wavenumber (cm-1)") .. parsed-literal:: Text(0.5, 0, 'wavenumber (cm-1)') .. image:: Jupiter_cloud_model_using_amp_files/Jupiter_cloud_model_using_amp_29_1.png