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Chapter 1

Introduction

Items marked with ∗ in each chapter are under-
graduate review; in class we will only give a brief re-
cap. Sections marked with † contain detailed discus-
sions and derivations. We will generally skip these;
please read them if you have time. ♣ indicates hints
for calculations. Items marked with ‡ are somewhat
tangential to the main topic or provide additional
material.

1.1 Quantities ∗

Symbols for solar systems are as follows. ⊙: Sun, J :
Jupiter, ⊕: Earth Rx indicates th radis of x, Mx is
its x.

Lengths and Angles
The radii of the solar systems

• R⊙ = 7× 105 km

• RJ = R⊙/10

• R⊕ = RJ/10 = R⊙/100

and the Schwarzschild radius of the Sun is given by

• rg = 2GM⊙/c
2 = 3 km.

However, it is useful to remember the following rela-
tion,

• rg

2 au
= 10−8.

The solar radius is 1/100 of 1 au,

• 2R⊙

1 au
= 10−2.

The distance to the nearest star is approximately 1
pc. The facts for the angle of 1′′:

• 1′′ = 5× 10−6 radian

• 1au
1pc

= 1′′

• typical seeing ∼ 1′′

• the apparent diamter of the moon ∼ 30′

Weight
• M⊙ = 2× 1033 g

• MJ = M⊙/1000

• M⊕ = MJ/300
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Chapter 2

Motion of A Planet

We consider quantities related to planetary mo-
tion as observable properties of exoplanets. Two
such observables are the radial velocity curve, which
measures the stellar motion along the line of sight
induced by the planet, and astrometry, which traces
the stellar motion projected on the celestial sphere.

2.1 Two-Body Problem∗

We examine the motion and orbit of the planetstar
system. Treating both the planet and the star as
point masses (m1, m2) with positions r1, r2, and
assuming that the only force acting between them is
gravity, the system reduces to the two-body problem,
which can be solved analytically. Defining r ≡ r2 −
r1 as in Fig. 2.1, we introduce a polar coordinate
system in the orbital plane with basis vectors er =
(cos θ, sin θ)⊤ and eθ = (− sin θ, cos θ)⊤. Then r =
rer, and with ėr = θ̇(− sin θ, cos θ)T = θ̇eθ and ėθ =
θ̇(− cos θ,− sin θ)T = −θ̇ ėr, we obtain

ṙ = d

dt
rer = ṙer + rėr = ṙer + rθ̇eθ (2.1)

r̈ = (r̈ − rθ̇2)er +
[

1
r

d

dt
(r2θ̇)

]
eθ. (2.2)

Because r1 = −m2/(m1 +m2) r, r2 = m1/(m1 +
m2) r, the Lagrangian, with the barycenter at the
origin and using the reduced mass µ = (m−1

1 +
m−1

2 )−1, is

L = T − U = m1

2
|ṙ1|2 + m2

2
|ṙ2|2 +G

m1m2

r

= µ

2
[ṙ2 + (rθ̇)2] +G

m1m2

r
. (2.3)

O

m
1

m
2

r

r
2

r
1

m
1

m
2
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Figure 2.1: Coordinate system

Problem

Derive

r̈ − rθ̇2 = −
G(m1 + m2)

r2 (2.4)

and ḣ = 0 from the Lagrange equations

d

dt

(
∂L

∂ṙ

)
−

∂L

∂r
= 0,

d

dt

(
∂L

∂θ̇

)
−

∂L

∂θ
= 0, (2.5)

where h ≡ r × ṙ is the angular momentum vector.
That is, the orbital angular momentum vector h is
a conserved quantity in the two-body problem. This
means that the point mass is constrained to move on
the plane orthogonal to h (the orbital plane).

Transforming the variables in Eq. (2.4), let u ≡

1/r. Using hu2 = θ̇ and dr

dt
= dr

dθ
hu2 = −hdu

dθ
, we

obtain

d2u

dθ2 + u = G(m1 +m2)
h2 (2.6)

This is a nonhomogeneous second-order differential
equation, whose homogeneous solution can be writ-
ten as

uh = c1 cos θ + c2 sin θ = C1 cos (θ − C2). (2.7)
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Figure 2.2: Ellipse.

The nonhomogeneous solution is clearly

ui = G(m1 +m2)
h2 , (2.8)

and the general solution is the sum of these. Factor-
ing out G(m1 +m2)/h2 and introducing integration
constants e and ω, the general solution can be writ-
ten as

u = G(m1 +m2)
h2 [1 + e cos (θ − ω)]. (2.9)

Returning to r = 1/u, we obtain

r = h2

G(m1 +m2)
1

1 + e cos (θ − ω)
. (2.10)

Now, let us consider an ellipse as in Fig. 2.3. For
an ellipse,

r + r′ = 2a (2.11)

holds. From the coordinates, we have

(r′)2 = (xp + 2ea)2 + y2
p

= (r cos θ + 2ea)2 + (r sin θ)2, (2.12)

and eliminating r′ from Eqs. (2.11,2.12), we obtain
the conic equation of the ellipse

r = a(1− e2)
1 + e cos θ

. (2.13)

Defining the semi-major axis a, the semi-minor
axis b, and the true anomaly f as

h2

G(m1 +m2)
= a(1− e2) (2.14)

b2 = a2(1− e2) (2.15)
f ≡ θ − ω, (2.16)

Eq. (2.10) takes the form of the conic equation

r = a(1− e2)
1 + e cos f

, (2.17)

which confirms that the solution of the two-body
problem is an ellipse (with 0 ≤ e < 1). The true
anomaly f corresponds to the angle of the starplanet
system measured from the periastron (the point clos-
est to the star, analogous to the solar periastron).
The quantity ω is called the argument of periastron
and represents a counterclockwise rotation of the el-
lipse described by the conic equation (2.13) by an
angle ω.

Since Ȧ is constant, the area of the ellipse can be
written as

A = πab = h

2
P, (2.18)

where P is the orbital period. Rearranging this ex-
pression, we obtain

P 2 = 4π2

G(m1 +m2)
a3, (2.19)

which shows that the square of the orbital period is
inversely proportional to the total mass and propor-
tional to the cube of the semi-major axis (Keplers
third law). In the case of a circular orbit, the or-
bital angular velocity is given by 1/

√
G(m1 +m2)a.

Eliminating G using Eq. (2.14), we also obtain an
expression in terms of angular momentum,

P = 2πa2√1− e2

h
. (2.20)

The mean motion is defined by

n ≡ 2π
P
. (2.21)

From equation (2.20), we can also express the mean
motion as

n = h

a2
√

1− e2
. (2.22)

2.2 Two-body problem in
three-dimensional space

In the previous chapter, we considered two-body
motion on a two-dimensional plane. In reality, ce-
lestial bodies exist in three-dimensional space from
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Figure 2.3: Coordinate system.

the perspective of an observer, so the orbit must
be rotated into 3D. The orbital inclination i, which
represents the tilt relative to the observer, and the
longitude of the ascending node Ω, which specifies
the azimuthal direction, are introduced. By speci-
fying the six parameters a, e, ω, f, i,Ω, the orbit of
the two-body problem in three-dimensional space is
uniquely determined.

Let us represent these rotations using rotation ma-
trices. First, we take the reference ellipse to be that
described by the conic equation (2.13) and shown in
Fig. 2.3. The z-axis is taken perpendicular to the
plane of the page.

• (1) Rotating the conic equation (2.13) counter-
clockwise about the z-axis by ω gives the ellipse
of the two-body problem, Eq. (2.17).

• (2) Next, rotating counterclockwise about the x-
axis by i tilts the orbital plane by i with respect
to the celestial sphere.

• (3) Finally, a remaining degree of freedom cor-
responds to rotation about the z-axis by Ω,
namely the azimuthal rotation on the celestial
sphere.

Applying these rotation matrices in sequence
to the vector representing the ellipse r =

(r cos θ, r sin θ, 0), we first obtain (1):

r =

r cos θ
r sin θ

0

 =

r cos
(
f + ω

)
r sin

(
f + ω

)
0

 . (2.23)

Next, (2) is

r′ =

1 0 0
0 cos i − sin i
0 sin i cos i

 r (2.24)

=

 r cos
(
f + ω

)
r sin

(
f + ω

)
cos i

r sin
(
f + ω

)
sin i

 . (2.25)

Lastly, we obtain the trajectory in the three-
dimensional space (X,Y, Z) from (3):

r′′ =

cos Ω − sin Ω 0
sin Ω cos Ω 0

0 0 1

 r′ (2.26)

=

r cos
(
f + ω

)
cos Ω− r sin

(
f + ω

)
cos i sin Ω

r cos
(
f + ω

)
sin Ω + r sin

(
f + ω

)
cos i cos Ω

r sin
(
f + ω

)
sin i


(2.27)

≡

XY
Z

 . (2.28)

2.3 Two-body problem as a
function of time

The solution to the two-body problem has so far
been expressed as a function of the true anomaly f ,
namely r = r(f). However, in actual observations,
the two-body problem is always observed as a func-
tion of time. We therefore consider how to obtain
the time-dependent expression r = r(t).

The approach is as follows. First,

v2 = ṙ · ṙ = (ṙer + rḟeθ) · (ṙer + rḟeθ)
= ṙ2 + r2ḟ2 (2.29)

= ṙ2 + h2

r2 , (2.30)

where we used h = r2ḟ . Then,
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• (1) Express v2 in terms of f by transforming r
and ṙ in Eq. (2.30), giving v2(f).

• (2) Transform v2(f) into v2(r) using the conic
equation.

• (3) Equating v2 = ṙ2+h2/r2, derive an equation
for r and ṙ, namely a differential equation for r
with respect to time.

For step (1), the transformation from r to f can
be made using the conic equation (2.17). To express
ṙ in terms of f , we use

ṙ = h

a(1− e2)
e sin f. (2.31)

♣ Derivation of Equation (2.31)

ṙ =
df

dt

d

df

(
a(1− e2)
1 + e cos f

)
= ḟ

a(1− e2) e sin f(
1 + e cos f

)2

= ḟ
a(1− e2)
1 + e cos f

e sin f

1 + e cos f
= rḟ

e sin f

1 + e cos f

=
h

r

e sin f

1 + e cos f
=

h

a(1− e2)
e sin f (2.32)

Then, we obtain

v2 = ṙ2 + (rḟ)2 = ṙ2 + h2

r2

= h2

a2(1− e2)2 [2(1 + e cos f) + e2 − 1] = v2(f).

(2.33)

Next, step (2), where v2(f) is transformed back
into a function of r using the conic equation, gives

v2(r) = h2

a(1− e2)

(
2
r
− 1
a

)
. (2.34)

From step (3), we obtain the time differential equa-
tion for r:

ṙ2 − h2

a(1− e2)

(
2
r
− 1
a

)
+ h2

r2 = 0. (2.35)

This equation cannot be solved directly. Therefore,
we introduce the eccentric anomaly E:

r = a(1− e cosE). (2.36)

Using this E, we transform the differential equation
(2.35) into a differential equation in terms of E and
Ė:

Ė = n

1− e cosE
. (2.37)

Although introduced somewhat ad hoc, the solution
is given by

E − e sinE = n(t− t0), (2.38)

and one can verify Eq. (2.37) by differentiation.
Here, defining the mean anomaly M as a proxy for
the time variable,

M ≡ n(t− t0), (2.39)

we obtain

f(E) = E − e sinE −M = 0, (2.40)

whose solution yields E.

♣ Derivation of Equation (2.37)

2
r
−

1
a

=
1
a

( 2
1− e cos E

− 1
)

=
1
a

1 + e cos E

1− e cos E
=

1
a

1− e2 cos2 E

(1− e cos E)2 . (2.41)

h2

r2 −
h2

a2(1− e2)

(2
r
−

1
a

)
=

h2

a2(1− e cos E)2 −
h2(1− e2)

a2(1− e cos E)2(1− e2)

=
h2(1− e2)

a2(1− e cos E)2(1− e2)
−

h2(1− e2 cos2 E)
a2(1− e cos E)2(1− e2)

= −
h2e2

(
1− cos2 E

)
a2(1− e cos E)2(1− e2)

(2.42)

ṙ =
dE

dt

d

dE

(
a(1− e cos E)

)
= Ė ae sin E (2.43)

ṙ2 = Ė2 a2e2 sin2 E (2.44)

From these equations, we obtain

Ė2 a2e2
(

1− cos2 E
)

=
h2 e2

(
1− cos2 E

)
a2(1− e cos E)2(1− e2)

,

(2.45)

that is,

Ė2 =
h2

a4(1− e cos E)2(1− e2)
(2.46)
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Assuming Ė > 0, we obtain

Ė =
h

a2
√

1− e2 (1− e cos E)
(2.47)

=
n

1− e cos E
. (2.48)

We used the representation of the mean motion
(2.22).

Furthermore, the relationship between E and f
can be derived from Eq. (2.36) and the conic equa-
tion of the two-body problem (2.17):

cos f = cosE − e
1− e cosE

. (2.49)

Thus, once the period P and the offset t0 are
known, the mean anomaly M can be calculated
from the time t. By solving Eq. (2.40) numerically,
one obtains E, and then the true anomaly f can be
determined from Eq. (2.49).

Solving Eq. (2.40) using the NewtonRaphson
method

The nonlinear equation f(E) = 0 must be solved
numerically. One method for doing so is the New-
tonRaphson method. As illustrated in Fig. 2.4, the
procedure begins with an initial guess E1, then de-
termines the tangent line to f(E) at E1, and finds
analytically the intersection of this line with the E-
axis, which is taken as E2. Repeating this procedure
n times yields successive approximations. At the i-
th step, the tangent line (i.e., the first-order Taylor
expansion of f(E) about Ei) is

y = f(Ei) + f ′(Ei)(E − Ei), (2.50)

and therefore,

Ei+1 = Ei + ∆Ei (2.51)

∆Ei ≡ −
f(Ei)
f ′(Ei)

. (2.52)

Here, ∆Ei is called the update term at the i-th it-
eration1. This iteration is repeated until the conver-
gence criterion |Ei+1 − Ei| < ϵ is satisfied, where ϵ

1This can also be viewed simply as updating the solution
using the first-order Taylor approximation of f(E),

f(E) ≈ f(Ei) + f ′(Ei)(E − Ei) = 0, (2.53)

taking Ei+1 as the solution, and repeating the procedure.

Figure 2.4: Newton-Raphson method.

is the tolerance, and the resulting Ei is taken as the
approximate solution.

For the calculation in Eq. (2.50), the derivative of
f is required. From Eq. (2.40),

f ′(E) = 1− e cosE. (2.54)

Newton’s method as 2nd-order optimization†

Consider the optimization problem of finding x = x∗

that minimizes a cost function Q(x):

x∗ = minimizex Q(x). (2.55)

The stationary condition dQ(x)/dx = 0 can be solved
using the NewtonRaphson method. In this case, by
setting f(x) = Q′(x) and applying Eq. (2.51), the
update rule becomes

xi+1 = xi + ∆xi (2.56)

∆xi ≡ −
Q′(xi)
Q′′(xi)

, (2.57)

which requires the second derivative of Q(x). For this
reason, it is called second-order optimization. In the
context of optimization, the term “Raphson” is usu-
ally omitted, and it is simply called Newton’s method.
In general, the multidimensional version of Newton’s
method can be formulated in the same way. From the
multidimensional Taylor expansion,

f(x) ≈ f(xi) + J(xi)(x− xi) = 0, (2.58)

the solution x becomes the next update point, leading
to

xi+1 = xi + ∆xi (2.59)

∆xi ≡ −J−1(xi)f(xi), (2.60)

where J(xi) is the Jacobian at xi.
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Figure 2.5: Definition of the barycenter o and each
vector.

2.4 Radial velocity
The first detection of an exoplanet was achieved by
measuring the variation in the stellar radial veloc-
ity induced by the planets orbital motion, observed
through the Doppler shift of the stellar spectrum.

We now consider the radial velocity variation of a
star caused by an orbiting planet. In the two-body
case, the observed stellar radial velocity corresponds
to the motion of the vector measured from the sys-
tem barycenter. As shown in Fig. 2.5, let the planet
be denoted by p, the star by ⋆, and their barycenter
by o. The stellar and planetary masses are M⋆ and
Mp, and their positions are r⋆ and rp, respectively.
The barycenter ro of this system is given by

ro = M⋆r⋆ +Mprp

M⋆ +Mp
(2.61)

The positions relative to the barycenter are defined
as r̂⋆ = r⋆ − ro, r̂p = rp − ro, and the vector from
the star to the planet as r̂ = r̂p − r̂⋆. Then,

M⋆r̂⋆ +Mpr̂p = M⋆r̂⋆ +Mp(r̂⋆ + r̂) = 0, (2.62)

which gives

r̂⋆ = − Mp

M⋆ +Mp
r̂. (2.63)

The position vector of the star as seen by the ob-
server can then be expressed using the barycenter

position vector ro:

r⋆ = ro + r̂⋆. (2.64)

Since the star moves in the opposite direction to
the planet, let us take the line of sight along the
negative Z-axis and, in order to preserve the coun-
terclockwise orientation, set Ω = π. In this case, the
stellar radial velocity is given by the negative of the
inner product of the time derivative with the unit
vector eZ in the Z direction,

vr = Vsys − ˙̂r⋆ · eZ, (2.65)

where Vsys ≡ −ṙo · eZ is the systemic velocity of the
entire system. From Eq. (2.63),

vr = Vsys + Mp

M⋆ +Mp

˙̂r · eZ. (2.66)

Here, r̂ corresponds to r in the two-body problem
in the previous section, so the same formalism can
be applied directly. Thus, ˙̂r⋆ · eZ corresponds to
the time derivative of the Z component in the three-
dimensional coordinate system, Ż. Using Eq. (2.28),

vr = Vsys + Mp

M⋆ +Mp
Ż, (2.67)

with

Ż = d

dt
[r sin i sin (f + ω)]

= ṙ sin i sin (f + ω) + rḟ sin i cos (f + ω). (2.68)

Using Eq. (2.31), rḟ = h/r, and the conic equa-
tion (2.17), we obtain

vr = Vsys + Mp

M⋆ +Mp

h sin i
a(1− e2)

[e sin f sin (f + ω)

+ e cos f cos (f + ω) + cos (f + ω)] (2.69)

= Vsys + Mp

M⋆ +Mp

h sin i
a(1− e2)

[cos (f + ω) + e cosω]

(2.70)

♣

sin f sin (f + ω) + cos f cos (f + ω) =
cos (−f) cos (f + ω) − sin (−f) sin (f + ω) =
cos (−f + f + ω) = cos ω

9



Alternatively, writing out h explicitly, we obtain

vr = Vsys +K⋆ [cos (f + ω) + e cosω] (2.71)

K⋆ ≡
Mp sin i√

1− e2

√
G

(Mp +M⋆)a
, (2.72)

which represents the radial velocity curve of the two-
body problem. The order of magnitude of the radial
velocity variation is

K⋆ ∼ 30m/s, Mp sin i
MJ

(
M⋆

M⊙

)−1/2 ( a
au

)−1/2

(2.73)

= 130m/s, Mp sin i
M⊕

(
M⋆

M⊙

)−1/2 ( a

0.05au

)−1/2
(HJ)

= 0.1m/s, Mp sin i
M⊕

(
M⋆

M⊙

)−1/2 ( a
au

)−1/2
(Earth)

The Doppler shift corresponding to this radial veloc-
ity variation is

∆λ
λ
∼ K⋆

c

= 10−7Mp sin i
MJ

(
M⋆

M⊙

)−1/2 ( a
au

)−1/2
. (2.74)

Since the spectral resolution of current high-
dispersion spectrographs is R ∼ 105, it is important
to boost the signal-to-noise ratio using many molec-
ular absorption lines (and photon counts). In prac-
tice, stabilizing wavelength calibration with iodine
cells or frequency combs is also crucial.
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Figure 2.6: Radial velocity curves (left) and corre-
sponding orbits (right). The upper panels are for
ω = π/6, and the lower panels are for ω = π/2. Line
styles: black solid line for e = 0, black dashed line
for e = 0.5, and gray solid line for e = 0.8. The el-
lipses on the right correspond to orbits viewed from
above when i = π/2. If the line of sight is taken from
bottom to top, they correspond to the stellar orbit
in the radial velocity curve, while if taken from top
to bottom, they correspond to the planetary orbit.

Radial velocity curve as a function of
time

In actual observations, measurements are obtained
as functions of time, so we would like to express
the solution in terms of time. From the time t
and the orbital period, the mean anomaly M can
be determined. The eccentric anomaly E is then
obtained by numerically solving Eq. (2.40). Using
these, Eq. (2.71) can be rewritten numerically as a
function of time.

Thus, the physical quantities that can be derived
from the radial velocity curve are, from Eq. (2.71),
Vsys,K⋆, e, ω. In addition, the orbital period P and
a phase parameter (the time offset) related to f can
also be estimated. Figure 2.6 shows several radial
velocity curves and the corresponding elliptical or-
bits. According to Keplers second law, one can see
that the radial velocity curve changes rapidly when
the body approaches periastron.
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Binary Mass Function,†

Radial velocity analysis was originally developed for
binary star systems before it was applied to starplanet
systems. In this case, the approximation Mp ≪ M⋆

does not hold. Rewriting Eq. (2.72) with ⋆ → 1 and
p → 2, and using Keplers third law (2.19), we can
separate the right-hand side into observable quanti-
ties and the left-hand side into physical parameters,
giving

f ≡
M3

2
(M1 + M2)2 sin3 i =

P K3
1

2πG
(1− e2)3/2. (2.75)

Here, f is a quantity that can be determined solely
from the observed parameters of star 1s radial veloc-
ity curve, K1, e, and P , even in the general case of
arbitrary mass ratios. This f is called the binary mass
function.
Conversely, using a scaled form,

K1 = 29.8, [km/s]
sin i
√

1− e2

(
M2

M1 + M2

)
×
(

M1 + M2

M⊙

)1/3 ( P

1yr

)1/3
, (2.76)

is useful for estimating the detectability in the case
of binary systems. The value 29.8 km/s corresponds
to the Earths orbital velocity.

2.5 Astrometry

The radial velocity variation makes use of the Ż com-
ponent of the three-dimensional Keplerian motion.
Since astrometry is the method of measuring the
position of a star on the celestial sphere, it makes
use of the (X,Y ) components of the motion. After
correcting for proper motion and parallax, the po-
sition of the star due to two-body motion can be
expressed as an observable angle,

θ = r̂⋆

d
= − Mp

M⋆ +Mp

r̂

d
, (2.77)

which is a two-dimensional projection, where d is the
distance between the observer and the star. From

Eq. (2.28), we have

θx = − Mp

M⋆ +Mp

X

d
= − Mp

M⋆ +Mp

r

d

× [cos
(
f + ω

)
cos Ω− sin

(
f + ω

)
cos i sin Ω]

(2.78)

θy = − Mp

M⋆ +Mp

Y

d
= − Mp

M⋆ +Mp

r

d

× [cos
(
f + ω

)
sin Ω + sin

(
f + ω

)
cos i cos Ω].

(2.79)

This solution is invariant under the transforma-
tion (i → π − i, f → 2π − f , ω → 2π − ω),
which means that astrometry alone cannot distin-
guish whether the planet is approaching or reced-
ing.
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Chapter 3

Inference of Motion

In Chapter 2, we discussed physical models of ob-
servables related to the motion of exoplanets. All of
these are one-dimensional time-series data. In this
chapter, we focus on estimating the internal param-
etersnamely the physical properties of exoplanetsby
combining physical and statistical models with one-
dimensional time-series data.

By comparing observational data d with a theo-
retical model f , one can address the following:

1. Determine whether a given theoretical model f
can explain the observational data.

2. Assuming that a theoretical model f is cor-
rect, determine or estimate the parameters θ
included in that model based on the data d (pa-
rameter estimation).

3. When multiple models exist, determine which
model better explains the observations d
(model selection).

Since model selection is considerably more in-
volved, here we focus on parameter estimation.

As an example, let us consider the comparison be-
tween radial velocity observational data and a the-
oretical model. In this case, d can be regarded as
a vector consisting of the radial velocity data series,
with each element di associated with the correspond-
ing time ti, making it comparable to the theoretical
model. The theoretical model is given by Eq. (2.71).
The parameter vector is θ = (Vsys,K⋆, e, ω, T0, P ).

Radial velocity raw data d

See https://github.com/HajimeKawahara/class25 .

3.1 Point estimation and opti-
mization

Parameter estimation that selects a single parameter
vector θ for a model f(θ) by comparing it with data
d is called point estimation. If the data contained
no errors at all, we would simply need to find θ such
that

d− f(θ) = 0. (3.1)

However, in practice, observational data contain er-
rors, and such a θ usually cannot be found. Instead,
we can write

d = f(θ∗) + ϵ, (3.2)

which implies that the model f is correct, that a true
parameter θ∗ exists, and that the residual vector ϵ
originates solely from observational errors. To for-
mulate the theory in a way that incorporates obser-
vational errors, we need a probabilistic model that
generates these errors. For example, if ϵ follows an
independent zero-mean normal distribution,

ϵi ∼ N (0, σ), (3.3)

we can write more compactly that the physical
model f(θ∗) is the mean of the probabilistic model:

di ∼ N (fi(θ∗), σ). (3.4)

From this discussion, it becomes clear that when
we speak of comparing observational data with a the-
oretical model, the theoretical model must include
not only f but also a probabilistic model. Schemat-
ically,
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https://github.com/HajimeKawahara/class25


Empirically testable theoretical model

Testable theory = Physical/Chemical model
+ Probabilistic model

In practice, theoretical astronomy often overem-
phasizes the physical/chemical model while neglect-
ing the probabilistic model, whereas observational
astronomy tends to fix the physical/chemical model.
Constructing probabilistic models has historically
been computationally demanding and thus difficult
to handle until recently. However, advances in com-
puting power and Bayesian statistical methods now
allow us to tackle this issue.

Returning to point estimation: although obser-
vational errors are often correlated, we leave their
treatment to Gaussian process modeling and for now
assume independent errors. Further, suppose these
errors are Gaussian with the same σ for all data
points. In this case, the probability that a model
f(θ) with parameter vector θ generates d is

p(d|θ) =
N∏

i=1
N (fi(θ), σ) (3.5)

∝ exp

(
−
∑N

i=1(fi(θ)− di)2

2σ2

)
. (3.6)

This is the likelihood function. The method that
adopts as the point estimate the θ that maximizes
the likelihood is called the maximum likelihood
method. In this case, we solve the optimization prob-
lem

θ∗ = minimizeθ L2(θ) (3.7)

L2(θ) =
N∑

i=1
(fi(θ)− di)2, (3.8)

which is exactly the least squares method. In other
words, the least squares method coincides with max-
imum likelihood estimation under the assumption of
independent Gaussian errors.

A relaxed version of the assumptions behind least
squares point estimation is χ2 minimization. Assum-
ing that the error σi of each data point is known,

p(d|θ) ∝ exp

(
−

N∑
i=1

(fi(θ)− di)2

2σ2
i

)
, (3.9)

we then solve the optimization problem

θ∗ = minimizeθ χ
2(θ) (3.10)

χ2(θ) =
N∑

i=1

(fi(θ)− di)2

2σ2
i

. (3.11)

3.2 Optimization problems
and automatic differentia-
tion

From the above discussion, it is clear that the practi-
cal task of point estimation is an optimization prob-
lem. To solve nonlinear model optimization prob-
lems, there are many methods: Newton’s method
as a second-order optimization discussed earlier, its
extensions such as quasi-Newton methods, the Mar-
quardt method implemented by many researchers
while studying Numerical Recipes, or derivative-free
methods like the NelderMead method, also known as
the amoeba method.

Here, however, we focus on first-order optimiza-
tion using automatic differentiation. This is because
when the number of parameters is large, second-
order optimization becomes limited by the compu-
tation of the Hessian. For this reason, machine
learning models such as neural networks often rely
on first-order optimization. The basic first-order
method is gradient descent,

θ(k) = θ(k−1) − γ ∂

∂θ
f(θ), (3.12)

which proceeds by descending the steepest slope.
Since pure gradient descent often overshoots, var-
ious momentum terms are added to improve con-
vergence. A representative method is ADAM [13],
though we do not go into its algorithmic details here.

First-order optimization requires derivatives of
the model with respect to its parameters. Broadly
speaking, there are four ways to compute derivatives
numerically. The first is to perform differentiation
by hand (manual differentiation) and code the re-
sults. This quickly becomes impractical as models
grow more complex, and it also hinders flexible im-
provements to the model. The second approach is to
use symbolic differentiation with tools such as Math-
ematica to obtain derivative expressions instead of
differentiating by hand. However, as anyone who
has used such tools knows, complex models generate
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Figure 3.1: Example of first-order optimization.

enormous expressions, which again limits flexibility.
The third approach is numerical differentiation, but
for complex models, numerical errors can accumu-
late easily.

For this reason, machine learning and related
fields often use automatic differentiation, as imple-
mented in JAX/tensorflow/pytorch etc. A model that
can be coded is usually composed of additions, sub-
tractions, multiplications, and divisions of functions
whose derivatives are known (here we call these el-
ementary functions). Automatic differentiation ex-
tends each elementary function

x :→ f(x) (3.13)

so that it outputs both the function value and its
derivative. Operations are then defined so that the
usual addition, multiplication, and division rules for
derivatives hold.

In JAX, automatic differentiation is implemented
using the JacobianVector Product (JVP). As an in-
troduction, however, we explain automatic differen-
tiation using dual numbers, which provides a simpler
explanation.

A dual number, z ∈ k[ϵ]/⟨ϵ2⟩1, is defined for a, b ∈

1This denotes a quotient ring of a polynomial ring.

R as

z = a+ bϵ (3.14)
ϵ2 = 0. (3.15)

One may think of this as analogous to complex num-
bers, except that while i2 = −1, here ϵ2 = 0. By
extending a variable x with the real part a = x and
the non-real part b = x′, for z = f +f ′ϵ, w = g+g′ϵ,
addition, multiplication, and division are defined as

z + w = (f + g) + (f ′ + g′)ϵ (3.16)
zw = fg + (f ′g + fg′)ϵ (3.17)

z/w = f

g
+ f ′g − fg′

g2 ϵ. (3.18)

This shows that the real part follows the usual arith-
metic, while the non-real part follows the sum, prod-
uct, and quotient rules of differentiation.

To realize the chain rule, a function x :→ F (x) is
extended as

x+ x′ϵ :→ F (x) + F ′(x)x′ϵ. (3.19)

Here, F (x) denotes the original function, while the
extension with dual numbers is denoted F̂ (x+ x′ϵ).
Thus, Eq. (3.19) can be written as

F̂ (x+ x′ϵ) = F (x) + F ′(x)x′ϵ. (3.20)

For a composite function G(F (x)), the extension be-
comes

Ĝ(F̂ (x+ x′ϵ)) = Ĝ(F (x) + F ′(x)x′ϵ) (3.21)
= G(F (x)) +G′(F (x))F ′(x)x′ϵ,

(3.22)

where the real part corresponds to the usual com-
position G(F (x)), and the non-real part reproduces

the chain rule G′(F (x))F ′(x)x′ = dG

dF

dF

dx
x′.

Minimal implementation of automatic
differentiation
Let us now implement a small version of automatic
differentiation in Python. The problem we want to
solve is to compute the derivative F ′(1) of

F (x) = log (cosx sin x) + sin x (3.23)
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at x = 1. Furthermore, we also want to find the
derivative G′(1) of the composite function

G(x) = F (F (x)) (3.24)

at x = 1. Differentiating Eq. (3.24) by hand is cum-
bersome, and the result of symbolic differentiation
would also be lengthy. However, with automatic dif-
ferentiation, the code becomes much more concise.

Since the operations in function (3.23) consist
of addition and multiplication, we define addition
and multiplication for dual numbers according to
Eqs. (3.16) and (3.17):

1 def mul(x, y):
2 a, b = x
3 c, d = y
4 return a*c, a*d + b*c
5

6 def add(x, y):
7 a, b = x
8 c, d = y
9 return a + c, b + d

Here, x, y are dual numbers. Next, the elementary
functions appearing in (3.23) are sin x, cosx, and
log x. To implement Eq. (3.20), if we represent a
dual number by a pair (a, b) consisting of its real and
non-real parts, then for a function F (x) we should
provide the inputoutput relation as

(x, dx)→ (F (x), F ′(x)dx). (3.25)

Accordingly:

1 import numpy as np
2 def cos(x):
3 a, b = x
4 return np.cos(a), - np.sin(a)*b
5

6 def sin(x):
7 a, b = x
8 return np.sin(a), np.cos(a)*b
9

10 def log(x):
11 a, b = x
12 return np.log(a), b/a

That is all. Then we can compute:

1 f = lambda x:

2 add(log(mul(cos(x),sin(x))),sin(x))
3 df = lambda x: f([x,1.0])
4 df(1.0)

This yields (F (1), F ′(1)) =
(0.05324076815279066,−0.37501280285243144).
Computing G′(x) is also simple:

1 g = lambda x: f(f(x))
2 dg = lambda x: g([x,1.0])
3 dg(1.0)

which gives (-2.8816056725768977, -
7.391555094461485). As this example shows,
automatic differentiation uses algebraic computa-
tion internally, so the accumulation of numerical
errors is smaller than in numerical differentiation.
It is also more flexible for coding.

Although we implemented it ourselves here, in
practice one would use automatic differentiation
packages such as JAX, PyTorch, or Enzyme.jl. Fur-
thermore, automatic differentiation is also powerful
for Bayesian statistical parameter estimation, which
will be introduced later. Programming in such a
way that the entire code remains differentiable end-
to-end is called differentiable programming [3].

3.3 Bayes’ theorem
Bayes’ theorem describes the probability of observ-
ing an event B under the condition that another
event A occurs. It is known as a fundamental rela-
tion concerning conditional probabilities.

Expressed mathematically, Bayes’ theorem is writ-
ten as

p(A | B) = p(B | A) p(A)
p(B)

.

Here,

• p(A | B) is the probability of A occurring given
that B has occurred.

• p(B | A) is the probability of B occurring given
that A has occurred.

• p(A) is the probability of A occurring.

• p(B) is the probability of B occurring.
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Bayes’ theorem is extremely useful when rea-
soning about probabilistic relationships in reverse.
That is, it provides a way to update the probabil-
ity of a candidate cause A in light of an observed
result B. In particular, in the fields of statistical
inference and machine learning, it is widely used as
the foundational theory for updating prior probabili-
ties into posterior probabilities based on information
obtained from observational data.

The proof is as follows. From the definition of
conditional probability,

p(A | B) = p(A ∩B)
p(B)

holds. On the other hand, from the definition of the
conditional probability representing the probability
of B occurring given A,

p(A ∩B) = p(B | A)p(A)

is obtained. Substituting this into the above expres-
sion gives

p(A | B) = p(B | A) p(A)
p(B)

.

In the context of inference in astronomy, we often
let A be the model parameters θ to be estimated,
and B the observational data d. The posterior prob-
ability is then expressed as

p(θ | d) = p(d | θ) p(θ)
p(d)

.

Here, p(d | θ) is the likelihood, which already ap-
peared in the context of point estimation, and p(θ)
is the prior distribution of the parameters. p(d) is
called the evidence; while it is required for model
comparison, it does not depend on θ, and therefore
need not be computed for parameter estimation.

See an example to apply Bayes’ theorem for the
daily astronomical research in the cloumn.

Rare event search‡

Let us apply Bayes’ theorem to everyday astronom-
ical research. In astronomy, one often searches for
rare events within a large volume of data. Let us gen-
erally call this a rare event search. Suppose we are
developing some algorithm to detect rare events. The
performance of the rare event detection algorithm is
defined as follows. Sensitivity: the probability that
the algorithm classifies a rare event as a rare event:

p(+|R) = a = 0.5
Specificity: the probability that the algorithm classi-
fies a non-rare event (hereafter referred to as garbage)
as garbage: p(−|R) = b = 0.999. Events: R = rare
event, R = garbage. Algorithm classification for the
events: + = algorithm classifies as rare event, − =
algorithm classifies as garbage. Now, let us compute
the probability that something classified as a rare
event is actually a rare event (here simply referred
to as the detection probability) as a function of the
rarity x = p(R).

f(x, a, b) ≡ p(R|+) =
p(+|R)p(R)

p(+)

=
p(+|R)p(R)

p(+|R)p(R) + p(+|R)p(R)

=
p(+|R)p(R)

p(+|R)p(R) + [1− p(−|R)][1− p(R)]

=
ax

ax + (1− b)(1− x)
(3.26)

When the rarity is x = 10−4, i.e., one rare event per
10,000 cases, the detection probability is p(R|+) =
f(10−4, 0.5, 0.999) ∼ 0.05. In this case, should
one try to improve the sensitivity of the algorithm,
which is still only at 50%, or should one try to fur-
ther improve the already high specificity of 99.9% to
strengthen the rejection of garbage? Consider the
case where efforts are made to increase sensitivity
so that it becomes perfect, i.e., from a = 0.5 to
a = 1. Then, the detection probability becomes
p(R|+) = f(10−4, 1, 0.999) ∼ 0.09, which is about
twice the original value, reaching 9%. Next, if one im-
proves the garbage rejection ability, raising the speci-
ficity from b = 0.999 to 0.9999, thus reducing false
positives by a factor of 10, the detection probability
becomes p(R|+) = f(10−4, 0.5, 0.9999) ∼ 0.33, ris-
ing to about one-third. This corresponds to the case
where the event is extremely rare and the probability
of misclassifying garbage as a rare event (i.e., 1 − b)
is larger than the rarity, i.e., when x≪ 1− b. In this
case,

f(x, a, b) =
ax

ax + (1− b)(1− x)

≈
ax

ax + (1− b)
=

r

r + 1
∼ r. (3.27)

where r ≡ ax/(1 − b). Therefore, to increase the de-
tection probability, it is usually more effective to re-
duce 1−b (i.e., to bring specificity closer to the rarity,
or equivalently to align specificity with the garbage
rate), rather than improving sensitivity, which is of-
ten already of order unity.

(Aside) Characteristics of rare event search‡

In rare event searches, it is crucial to reduce (1 −
specificity), i.e., the probability of misclassifying
garbage as rare, to be as close as possible to the
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rarity x. This essentially means “learn more about
garbage”, which is opposite to the motivation. Typ-
ically, rare event searches are conducted by people
interested in the rare events themselves, not in the
garbage. However, the rarer the event, the less strict
the event detection can be, and the more stringent
the algorithm must be in garbage rejection.
To find events that are 100 times rarer than those
previously targeted in surveys, simply increasing the
survey volume by a factor of 100 is not sufficient.
One must also reduce the probability of misclassify-
ing garbage as rare by a factor of 100. This may re-
quire improving the precision of the survey (in terms
of garbage rejection) by a factor of 100 as well, espe-
cially if the original survey was only barely detecting
the rare events.
Even if the survey volume is increased 100-fold to
target events of the same rarity, if (1−specificity) (the
probability of misclassifying garbage as rare) becomes
worse by a factor of 100, then 100 times more events
will not be detected. In such a case, the gain from
the increased survey volume disappears.

3.4 Markov Chain Monte
Carlo

In practice, even when the likelihood function and
prior distribution are given, it is often difficult to
analytically apply Bayes’ theorem to obtain the pos-
terior probability. The practical tool for connecting
astronomical data with theoretical models is Markov
Chain Monte Carlo (MCMC). MCMC is an algo-
rithm that, given a likelihood function and prior
distribution, produces Monte Carlo samples drawn
from the posterior probability distribution.

In the representative MCMC algorithm, the Ran-
dom MetropolisHastings (MH) algorithm, one first
sets an initial value θ0, and then repeats the follow-
ing procedure to converge to the stationary distribu-
tion of the posterior probability p(θ|d). The station-
ary chain then yields samples {θN ,θN+1, ...,θM} as
realizations of the posterior probability.

• (1) Let the i-th state be θi. From θi, ran-
domly generate a candidate for the next sam-
ple, θ̂i+1 (denoted with a hat as it is only a
candidate), according to some probability dis-
tribution q(θ̂i+1|θi) (the proposal distribution).
Here, q can be any distribution.

• (2) Accept θ̂i+1 with probability r. If accepted,
then set θi+1 = θ̂i+1.

Here,

r(θi, θ̂i+1) = min

[
1, p(θ̂i+1|d)q(θi|θ̂i+1)

p(θi|d)q(θ̂i+1|θi)

]
(3.28)

which is called the Metropolis ratio. Since this dis-
crete stochastic process depends only on the pre-
vious state, it is called a Markov chain, and the
method is known as Markov Chain Monte Carlo
(MCMC). Now, when evaluating the right-hand side
of Eq. (3.28), Bayes’ theorem is used. That is,

r(θi, θ̂i+1) = min

[
1, L(θ̂i+1)p(p̂i+1)

L(θi)p(θi)

]
(3.29)

shows that r(θi, θ̂i+1) can be computed if the like-
lihood and prior distribution are specified. Here,
we assume a symmetric proposal distribution, i.e.,
q(θi|θ̂i+1) = q(θ̂i+1|θi), such as a Gaussian.

Next, let us show that the above procedure leads
to a stationary distribution, and that it corresponds
to p(θ|d). Suppose that at step i, the state follows
p(θi|d), and by the procedure, θi+1 is generated
with probability p(θi+1|θi). Then at step i+ 1, θi+1
follows

p(θi+1) =
∫
p(θi+1|θi)p(θi|d)dθi. (3.30)

For this to be stationary, p(θi+1) must again equal
p(θi+1|d). The necessary condition for this is the
detailed balance condition:

p(θi+1|θi)p(θi|d) = p(θi|θi+1)p(θi+1|d). (3.31)

If detailed balance holds, then

p(θi+1) =
∫
p(θi+1|θi)p(θi|d)dθi

=
∫
p(θi|θi+1)p(θi+1|d)dθi = p(θi+1|d).

(3.32)

Now, in the MH algorithm, the probability of gen-
erating θi+1 from θi is

p(θi+1|θi) = r(θi,θi+1) q(θi+1|θi), (3.33)
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so that

p(θi+1|θi)p(θi|d) = r q(θi+1|θi)p(θi|d)

= min
[
1, p(θi+1|d)q(θi|θi+1)

p(θi|d)q(θi+1|θi)

]
q(θi+1|θi)p(θi|d)

= min [q(θi+1|θi)p(θi|d), p(θi+1|d)q(θi|θi+1)]

= min
[
p(θi|d)q(θi+1|θi)
p(θi+1|d)q(θi|θi+1)

, 1
]
q(θi|θi+1)p(θi+1|d)

= r(θi+1,θi)q(θi|θi+1)p(θi+1|d)
= p(θi|θi+1)p(θi+1|d) (3.34)

showing that detailed balance indeed holds. Note
that although the procedure begins from some arbi-
trary initial state θ0, the early part of the Markov
chain depends on this initial condition and must be
discarded from the analysis.

3.5 Hamiltonian Monte Carlo
and Automatic Differentia-
tion

The drawback of random MH is that, since it in-
volves random moves determined by the proposal
distribution, the rejection rate tends to become
high in high dimensions. Hamiltonian Monte Carlo
(HMC) is a method that introduces an auxiliary
“momentum” variable p corresponding to the tar-
get parameter θ, and reduces the rejection rate by
exploiting Hamiltonian conservation. Here, the po-
tential energy U and kinetic energy K are defined
as

U(θ) = − log p(θ|d) (3.35)

K(p) = 1
2

p⊤Mp (3.36)

where M is a positive-definite matrix called the mass
matrix. The Hamiltonian is then defined as

H(θ,p) ≡ U(θ) +K(p) (3.37)

and the joint probability distribution as

p(θ,p|d) = e−H(θ,p) = p(θ|d)p(p) (3.38)

p(p) = exp
(
−1

2
p⊤Mp

)
(3.39)

That is, the mass matrix corresponds to the inverse
of the Gaussian covariance, M = Σ−1. If (θ,p) fol-
low Hamilton’s equations, the Hamiltonian is con-
served over time, i.e.,

θ̇ = ∂H(θ,p)
∂p

= ∂K(p)
∂p

(3.40)

ṗ = −∂H(θ,p)
∂θ

= −∂U(θ)
∂θ

(3.41)

then

Ḣ =
D∑

i=1

[
∂H(θ,p)
∂pi

ṗi + ∂H(θ,p)
∂qi

q̇i

]
(3.42)

= ∂H(θ,p)
∂θ

θ̇ + ∂H(θ,p)
∂p

ṗ = 0 (3.43)

holds.
Now, the acceptance rate of the MetropolisHast-

ings algorithm (3.28) is given by

r(θi, θ̂i+1) = min

[
1, p(θ̂i+1, p̂i+1|d)

p(θi,pi|d)

]
(3.44)

= min
[
1, eH(θi,pi)−H(θ̂i+1,p̂i+1)

]
(3.45)

In other words, if the dynamical calculations are
carried out with sufficient accuracy and the Hamil-
tonian is nearly conserved, the acceptance rate be-
comes nearly 1. Finally, note that once we sample
from p(θ,p|d), marginalizing over p yields samples
from p(θ|d).

Although we do not provide a detailed explana-
tion here, the dynamical evolution is computed us-
ing the leapfrog scheme. In this step, the gradient
of U(θ) with respect to θ is required. This, in turn,
requires the derivative of the likelihood p(d|θ) with
respect to θ. Since the likelihood function contains
the forward model, ultimately the derivative of the
model with respect to θ is required. That is, HMC
requires gradient computation of the model.

Numerical differentiation is generally unsuitable
because errors accumulate. While hand-derived gra-
dients may be provided, in the case of complex mod-
els, automatic differentiation is often used for flexi-
bility. In other words, to perform HMC it is crucial
to construct the model within a differentiable pro-
gramming framework.
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3.6 Estimation of Physical Pa-
rameters from Radial Ve-
locity Curves

As an application so far, let us estimate the physical
parameters (Vsys,K⋆, e, ω, P, T0) when radial veloc-
ity curve data ti, (vr)i (i = 1, 2, · · · , N) are given.
First, the mean anomaly Mi at the time ti is

Mi = (ti − T0)2π
P

(3.46)

We can obtain Ei from Mi using the Newton-
Raphson method. The corresponding true anomaly
is related to E by

cos fi = cosEi − e
1− e cosEi

(3.47)

sin fi = sinEi

√
1− e2

1− e cosEi
(3.48)

From Eq. (2.71), we have

(vr)i,model =
Vsys +K⋆ [cos fi cosω − sin fi sinω + e cosω]

(3.49)

The probabilistic model assumes that the obser-
vational noise is independent Gaussian:

p(d|θ) = N (µ, σ2I) (3.50)
µi = (vr)i,model (3.51)

In this case, the parameters to be estimated are
θ = (Vsys,K⋆, e, ω, P, T0, σ). By setting prior dis-
tributions for these parameters, we can perform
MCMC with random MH.

For HMC-NUTS, a bit more ingenuity is required.
Basically, if the above model is written using a differ-
entiable package such as JAX, it should work. How-
ever, in the Newton-Raphson method, when solving
F (E,M, e) = E − e sinE − M = 0 with a while
loop and convergence condition, the computational
graph is disconnected and differentiation is not pos-
sible. In other words, ∂E/∂M and ∂E/∂e cannot
be obtained directly.

Therefore, using the implicit function theorem

Figure 3.2: Fit to the radial velocity data

∂E

∂x
= − ∂F/∂x

∂F/∂E
(3.52)

we can derive by hand

∂E

∂M
= −∂F/∂M

∂F/∂E
= 1

1− e cosE
(3.53)

∂E

∂e
= − ∂F/∂e

∂F/∂E
= sinE

1− e cosE
(3.54)

and define these derivatives manually. For exam-
ple, in JAX, one can use custom_vjp to externally
define the derivatives.

3.7 Gaussian Process‡

We denote the multivariate normal distribution as

N (x; µ,Σ) ≡ 1√
(2π)N |Σ|

e−(x−µ)⊤Σ−1(x−µ)/2.

(3.55)

When there is no risk of misunderstanding, we may
also abbreviate the variable x and write it as

N (µ,Σ) ≡ 1√
(2π)N |Σ|

e−(x−µ)⊤Σ−1(x−µ)/2 (3.56)

Gaussian Process as a Correlated
Noise
A Gaussian process is a stochastic process of a ran-
dom variable x that follows a multivariate normal

19



distribution

d ∼ N (0,Σ) (3.57)

Suppose di represents a time series; if each compo-
nent of the covariance matrix of this multivariate
normal distribution is given as

Σij = Kij(a, τ) = ak(|ti − tj |; τ), (3.58)

namely as a function of the absolute difference be-
tween ti and tj , then we obtain a Gaussian process
with correlation length τ . Various types of kernel
functions k(t, τ) are possible. For example, the RBF
kernel

kRBF(t; τ) = exp
(
− t2

2τ2

)
, (3.59)

and the Matérn 3/2 kernel

kM3/2(t; τ) =
(

1 +
√

3t
τ

)
e−

√
3t/τ . (3.60)

are common choices.
If we sample data points from such a Gaussian

process, the result looks like Fig. 3.3. Here, addi-
tional Gaussian noise with zero mean and standard
deviation σ has been added to the data. For conve-
nience, let us call this noise the observational noise.

0 2 4 6 8 10
t

1

0

1

2

3

4
RBF τ= 0.4

data
GP only

Figure 3.3: Data sampled from a Gaussian process.
The solid line shows the case without observational
noise of amplitude σ.

Now, let us attempt MCMC sampling of τ , a, and
σ based on these data. Since Gaussian observational

noise with zero mean and standard deviation σ was
added, the probabilistic model is

d ∼ N (0,Σ′) (3.61)
Σ′ = K(a, τ) + σ2I (3.62)

Here, Σ′ assumes the RBF kernel with an addi-
tional diagonal term representing independent er-
rors. That is,

Σij(a, τ, σ) = akRBF(|ti − tj |; τ) + σ2I (3.63)

so that the covariance depends on the parameters
(a, τ, σ). By using the exponential distribution E(x)
to define the priors, for example, the prior distribu-
tions are

p(a) = E(1) (3.64)
p(τ) = E(1) (3.65)
p(σ) = E(1) (3.66)

and the likelihood is written as

p(d|a, τ, σ) = N (d; 0,Σ(a, τ, σ)). (3.67)

Thus, we can perform MCMC sampling.
The posterior distribution sampled using HMC is

visualized in Fig. 3.4. In the modeling viewpoint of
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Figure 3.4:

Eq. (3.61), the model mean is x = 0. This is intu-
itively seen in the credible interval shown in Fig. 3.5.
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Figure 3.5:

Gaussian Process as a Model
The Gaussian process analysis described above can
also be viewed as setting the prior distribution for
the model parameters m as

p(m) = N (m; 0,Σ), (3.68)

and regarding the data as

di = mi + ϵ (3.69)
ϵ ∼ N (0, σ2), (3.70)

where ϵ corresponds to observational noise. More
explicitly, if we write the model g as the identity
transformation, then

g(m) = m (3.71)
d = g(m) + ϵ (3.72)
ϵ ∼ N (0, σ2I), (3.73)

so that the likelihood function becomes

p(d|m) = N (d; g(m),0, σ2I) = N (d; m, σ2I).
(3.74)

Moreover, the prior distribution itself contains pa-
rameters, i.e.,

Σij = ak(|ti − tj |; τ), (3.75)

where the parameters a and τ are referred to as
hyperparameters. Assuming prior distributions for
these hyperparameters (often called hyperpriors) is
then required.

When the hyperparameters are fixed, it is known
that the posterior distribution of m can be writ-
ten analytically. Here, let us outline the Gaussian

process calculation. Since the product of two multi-
variate normal distributions is again a multivariate
normal distribution, it suffices to compute only the
exponent part of the Gaussian. The exponent part
of the multivariate normal distribution is

− 2 logN (m; µ,Σ) = (m− µ)⊤Σ−1(m− µ)
= m⊤Σ−1m− 2mT Σ−1µ + const. (3.76)

Thus, if a probability density p(m) known to follow
some multivariate normal distribution can be writ-
ten as

−2 log p(m) = m⊤Pm− 2m⊤q + const, (3.77)

then, by comparison with Eq. (3.76), this density
must be

p(m) = N (m;P−1q, P−1). (3.78)

Now, since the posterior distribution is

p(m|d) ∝ p(d|m)p(m) = N (d; m, σ2I)N (m; 0,Σ),
(3.79)

expanding the exponent part with respect to m
yields

− 2 log [N (d; m, σ2I)N (m; 0,Σ)]
= m⊤(Σ−1 + σ−2I)m− 2σ−2m⊤d + const.

(3.80)

Furthermore, using

(Σ−1 + σ−2I)−1 = Σ(I + σ−2Σ)−1, (3.81)

we obtain

p(m|d) = N (m; Σ(σ2I + Σ)−1d,Σ(I + σ−2Σ)−1).
(3.82)

By MCMC we can sample τ and σ, but let us
consider what the posterior distributions of these
parameters mean. Within the current framework,
these can be regarded as hyperparameters, so we de-
fine θ = (a, τ, σ)⊤ as the vector of hyperparameters.
From here on, we will treat θ probabilistically as
well. Now, the marginalized likelihood over m is

p(d|θ) = p(d|m,θ)p(m,θ)
p(m|d,θ)

, (3.83)
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which is still a multivariate normal distribution.
Considering only the terms involving d in the ex-
ponent part, we obtain

− 2 log p(d|θ) =
− 2 log p(d|m,θ) + 2 log p(m|d,θ) + const
= −2 logN (d; m, σ2I)
+ 2 logN (m; Σ(σ2I + Σ)−1d,Σ(I + σ−2Σ)−1)
= d⊤(σ2I + Σ)−1d + const. (3.84)

Therefore,

p(d|θ) = N (d; 0,Σ + σ2I). (3.85)

If Σ = K(τ), this is equivalent to Eq. (3.61). That
is, given a (hyper)prior distribution p(θ), the
marginalized posterior distribution is

p(θ|d) ∝ p(d|θ)p(θ), (3.86)

which is what we are sampling.
Figure 3.4 can therefore be understood as show-

ing the marginalized posterior distribution of the
hyperparameters τ and σ. In other words, for
k = 0, ..., Ns − 1,

θ†
k ∼ p(θ|d) ∝ p(d|θ)p(θ), (3.87)

we have sampled these. Using these samples to-
gether with Eq. (3.82), and noting that

p(m,θ|d) = p(m|θ,d)p(θ|d), (3.88)

it follows that

p(m|θ†
k,d) = N (µk,Kk), (3.89)

µk = K(a†
k, τ

†
k)((σ†

k)2I +K(a†
k, τ

†
k))−1d,

(3.90)

Kk = K(a†
k, τ

†
k)(I + (σ†

k)−2K(a†
k, τ

†
k))−1,

(3.91)

so that the sampled sets (m†
k,θ

†
k) satisfy

(m†
k,θ

†
k) ∼ p(m,θ|d). (3.92)

2

2While there is abundant literature on methods using
point estimates of hyperparameters (so-called maximum
marginal likelihood or maximum evidence), discussions of re-
sampling from the marginalized posterior are harder to find.
For reference, the author has previously discussed this in the
context of Bayesian linear problems with Gaussian processes
[10].

By computing the HPDI, we obtain the credible
interval for m shown in Fig. 3.6. It should be noted
that this represents the 90% interval of the model m,
and not the prediction of d including observational
noise.
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Figure 3.6:

Prediction at Locations Without Data
Points
Now, in general, what is the predictive value at t =
t∗? In what follows, we omit the hyperparameters
for simplicity of notation. First, when m and m∗

follow a Gaussian process,

p(m∗|m) = N (K⊤
×K

−1m,K∗ −K⊤
×K

−1K×),
(3.93)

where

Kij = ak(|ti − tj |; τ), (3.94)
(K×)ij = ak(|ti − t∗j |; τ), (3.95)
(K∗)ij = ak(|t∗i − t∗j |; τ). (3.96)

Similarly,

p(m∗|d) = N (K⊤
×K

−1
σ d,K∗ −K⊤

×K
−1
σ K×),

(3.97)

where

(Kσ)ij = ak(|ti − tj |; τ) + σ2δi,j , (3.98)

and δi,j is the Kronecker delta. Here, p(m∗|d) is
the posterior distribution of the Gaussian process
regarded as the model parameters, and thus obser-
vational noise is not taken into account.
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If we wish to make predictions including observa-
tional noise, then, based on the model

d∗ = m∗ + ϵ, (3.99)

we obtain

p(d∗|d) = N (K⊤
×K

−1
σ d,K∗,σ −K⊤

×K
−1
σ K×),

(3.100)

where

(K∗,σ)ij = ak(|t∗i − t∗j |; τ) + σ2δi,j . (3.101)

Thus, by performing sampling including the hy-
perparameters, one can evaluate Eqs. (3.97, 3.100)
and compute the credible intervals. Figure 3.7 shows
the HPDI results. The darker region corresponds to
the credible interval of m∗, while the lighter region
corresponds to that of d∗.
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Figure 3.7:

Adding Gaussian Process Model to An-
alytical Models‡

So far, we have considered as a model a Gaussian
process with zero mean generating the data:

m ∼ N (0,Σ(t)). (3.102)

Here, we instead consider the case in which the data
are generated by a Gaussian process whose mean is
a function of t, namely

m ∼ N (f(t),Σ(t)), (3.103)

where f(t) is the vector obtained by applying f(t)
element-wise to t = (t0, t1, · · · tN−1). In this case, let
us consider the following functional form for f(t):

f(t) = ke−(t−T0)2/2s2
sin (2πt/P ). (3.104)

Although we wrote f(t) for simplicity above, we also
denote it as f(t; θ) when emphasizing the depen-
dence on parameters θ = (T0, k, s, P ).

If the covariance matrix in Eq. (3.103) is chosen to
be an RBF kernel, then data such as those in the up-
per panel of Fig. 3.8 are generated. Here, τ = 3, and
we can see that a relatively smooth trend is super-
imposed on f(t). Fitting such a model with HMC
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Figure 3.8: The solid line shows the case without
observational noise of amplitude σ.

corresponds to modeling correlated noise plus obser-
vational noise along with the signal f(t), in order to
estimate the parameters of f(t).

When f(t) is known, the predictive distributions
without and with observational noise are, respec-
tively,

p(m∗|d) =
N (f(t∗) +K⊤

×K
−1
σ (d− f(t)),K∗ −K⊤

×K
−1
σ K×),

(3.105)
p(d∗|d) =
N (f(t∗) +K⊤

×K
−1
σ (d− f(t)),K∗,σ −K⊤

×K
−1
σ K×).
(3.106)

Since the parameters θ = (T0, k, s, P ) of f(t) are
sampled with HMC, for the latter case, for example,
using each sampled θ†

k, one can sample

d∗
k ∼ N (µk,Kk), (3.107)

µk = f(t∗; θ†
k) +K⊤

×K
−1
σ (d− f(t; θ†

k)), (3.108)
Kk = K∗,σ −K⊤

×K
−1
σ K×, (3.109)

thereby obtaining predictive samples. In this way,
Gaussian process fitting can be performed including
the model f(t) itself, as shown in the lower panel of
Fig. 3.8.
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Chapter 4

Spectra from Exoplanets

In this chapter, we provide an overview of the sig-
nals that encode information intrinsic to the planet
itself. Planetary signals can be broadly categorized
into three types: starlight transmitted through the
planetary atmosphere, thermal emission from the
planet, and starlight reflected by the planet, as
listed in Table 4.1. By performing spectroscopy of
these planetary signals, we can investigate the atmo-
spheres of exoplanets. In all cases, the light passing
through the planetary atmosphere is modified by ab-
sorption and scattering due to atmospheric compo-
nents such as molecules, atoms, and clouds. Detect-
ing these changes in the spectrum allows us to infer
the properties of the atmosphere. Depending on the
pathway of the light, the signals can be classified into
those that use radiation emitted by the planet itself
and those that rely on starlight. The former will
hereafter be referred to simply as emission, while
the latter correspond to transit transmission and re-
flection. These latter two are often regarded as pas-
sive methods, as the planetary signal is imprinted
on the starlight.

The primary challenge in exoplanet spectroscopy
lies in separating and removing the overwhelming
starlight in order to extract the planetary spectrum.
Table 4.2 shows the classification of techniques based
on their separation method.

In the first category, separation is achieved
through data analysis. Here, spectra are obtained
in which starlight and planetary light are not physi-
cally separated, and the planetary signal is extracted
through data processing. In transiting systems, the
reduction in brightness during transit allows us to
measure the planetary radius. By carrying this
out as a function of wavelength, one can obtain
atmospheric information. This technique is called

transmission spectroscopy. In transiting systems,
when the planet passes behind the star, the light
from the planet is blocked, producing another dip in
brightness. This is known as the secondary eclipse,
and it can be used to isolate the planetary emission.
These two techniques are applicable only to transit-
ing systems.

Next, for spectra in which starlight and planetary
light are blended, high-dispersion spectroscopy can
be used to extract the planetary signal. This method
exploits the difference in radial velocity between the
star and the planet to identify spectral features orig-
inating from the planet, in particular the absorp-
tion lines of molecules and atoms in its atmosphere.
Importantly, this technique can be applied to non-
transiting systems as well.

Finally, there is the instrumental method of sup-
pressing starlight through direct imaging. In this
case, detectability is determined by the contrast ra-
tio between the star and the planet, as well as their
angular separation. The closer the system is to the
observer, the larger the apparent separation, making
nearby planetary systems favorable targets. Current
direct imaging capabilities are limited to detecting
systems with moderate contrasts, and thus detec-
tions have been restricted to young, self-luminous
planets. However, with future advances in space-
based direct imaging and improvements in ground-
based instrumentation, the detection of more typical
planetary systems will in principle become possible.

4.1 Transit Phenomenon
Variations in the stellar flux also contain signals due
to the planet. The most straightforward example is
the flux decrease caused by the shadow of the planet
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Table 4.1: Classification of Spectral Types
Spectrum Technique Main Current Targets

Transmission Transmission Spectroscopy Transiting Systems
High-Dispersion Spectroscopy Transiting Systems

Emission Secondary Eclipse Spectroscopy Transiting Systems
Direct Imaging Young Planets

High-Dispersion Spectroscopy Bright Systems
Reflection Direct Imaging Nearby Earth-like Planets

High-Dispersion Spectroscopy Bright Systems

Table 4.2: Classification of Exoplanet Spectroscopic Methods
Separation Method Technique Applicable Targets

Data Analysis Transmission Spectroscopy Transiting Planets
Secondary Eclipse Spectroscopy Transiting Planets
High-Dispersion Spectroscopy Transiting or Hot Planets

Instrumentation Direct Imaging Young Planets or Nearby Earth-like Planets

Figure 4.1: Schematic illustration of a transiting sys-
tem (top) and an example of a transit light curve for
the hot Jupiter HAT-P-7b, as observed by Kepler
(bottom).

as it passes in front of the star, known as a transit
dip (Fig. 4.1). In transiting systems, dimming is
also observed when the planet passes behind the star.
The latter is called the secondary eclipse or simply
occultation.

The probability that a planet will transit, assum-
ing a circular orbit and Rp ≪ R⋆, corresponds to
the region shown in Fig. 4.2, and is given by

ptra = sin (R⋆/a) ∼ R⋆

a
= 0.005

(
R⋆

R⊙

)( a

1 au

)−1
,

(4.1)

which yields about 0.5% for a habitable-zone planet
around a G-type star.

Transit Light Curve
What physical quantities of an exoplanetary system
can be inferred from a transit light curve? If multi-
ple transits are observed, one can determine:

• Orbital period P

The transit depth gives:

• The squared ratio of planetary to stellar radii,
k ≡ Rp/R⋆

From the transit duration one can derive:

• The total transit duration Ttot

More specifically, under the assumption of a uni-
formly bright star, one can also resolve ingress and
egress phases, as illustrated in Fig. 4.3a. That is,
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Figure 4.2: Solid angle corresponding to lines of
sight where the system appears transiting (shaded
band). The star and planetary orbit are drawn in-
side. Since the radius of the outer sphere corre-
sponds to the distance d to the system, we can as-
sume a ≪ d. Thus, the probability that a random
line of sight intersects the band is 4π sin θ/(4π) ≈
R⋆/a.

the time between the start of ingress and the end
of egress (tT ), as well as the time during which the
planet is fully in front of the stellar disk (tF ), can be
measured. In practice, since stars exhibit limb dark-
ening, the actual light curve resembles Fig. 4.3b. By
modeling limb darkening, tT and tF can still be es-
timated. A commonly used model is the quadratic
limb-darkening law:

I(µ) = I(µ = 1)[1− u1(1− µ)− u2(1− µ)2], (4.2)

where µ = cosψ and ψ is the angle between the
surface normal and the line of sight. Thus µ = 1
at the stellar disk center and µ = 0 at the limb.
Note that integrating this model over the stellar disk
yields πR2

⋆(1− u1/3− u2/6)I(µ = 1).
Given k, one can also infer geometrically:

• The impact parameter: b = a

R⋆
cos i

With information on the stellar spectrum or stel-
lar density ρ⋆, one can estimate R⋆ and M⋆. Know-

Figure 4.3: Geometry of the transit light curve.
Panel (a) shows the case of a uniformly bright star.
In reality, stars exhibit limb darkening, producing
the light curve shown in panel (b).

ing P , the semi-major axis a can then be derived
from Keplers third law, allowing the orbital inclina-
tion i to be determined. If radial velocity measure-
ments are available for the system, then i yields the
planetary mass Mp, and thus the planetary mean
density

ρp ≡
3Mp

4πR3
p

. (4.3)

This makes it possible to classify exoplanets broadly.
For circular orbits, the total duration is Ttot =

2
√

1− b2R⋆/v, where v is the planetary velocity.
From Keplers third law neglecting planetary mass,

P 2 = 4π2

GM⋆
a3, (4.4)

and noting v = 2πa/P , we obtain

v3 = 2πGM⋆/P, (4.5)
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leading to T 3
tot ∝ P/ρ⋆. Thus, with P and b, the

stellar density ρ⋆ can be determined from the transit
duration.

For a simple case with b = 0, we have

Ttot =
(

3P
π2Gρ⋆

)1/3

(4.6)

= 2.6h
(

P

3day

)1/3(
ρ⋆

ρ⊙

)−1/3

(4.7)

= 30h
(

P

12yr

)1/3(
ρ⋆

ρ⊙

)−1/3

. (4.8)

The second line corresponds to typical hot Jupiters,
while the third line assumes Jupiters parameters.
For longer periods of several years, transit durations
exceed a day. For giant stars, lower stellar density
also results in longer durations.

column – Period and Light Curve Shape †

Assuming circular orbits, geometric considerations
give

sin
(

πtT

P

)
=

R∗

a

√
(1 + k)2 − b2

sin2 i
, (4.9)

sin
(

πtF

P

)
=

R∗

a

√
(1− k)2 − b2

sin2 i
, (4.10)

and approximating sin (πtT /P ) ∼ πtT /P and
sin (πtF /P ) ∼ πtF /P , we obtain

R⋆

a
=

π

2
√

k

√
t2
T − t2

F

P
sin i. (4.11)

Using Keplers third law neglecting planetary mass,

P 2 =
4π2

GM⋆
a3, (4.12)

and assuming sin i ∼ 1, we obtain

P =
πG

32
M⋆

R3
⋆

(
t2
T − t2

F

k

) 3
2

(4.13)

=
π2G

24
ρ⋆

(
t2
T − t2

F

k

) 3
2

. (4.14)

Thus, the only unknown quantity in the final expres-
sion is the stellar mean density ρ⋆, demonstrating
that the stellar mean density can be inferred from
transit light curve analysis.

4.2 Transmission Spec-
troscopy

Transmission spectroscopy measures the transit
depth as a function of wavelength. Including wave-
length dependence, the transit depth is expressed
as

δ(λ) =
(
Rp(λ)
R⋆

)2

, (4.15)

where the wavelength dependence of the stellar ra-
dius is neglected. Here, Rp(λ) corresponds to the
effective planetary radius at the altitude where the
atmosphere becomes opaque to stellar light. This
altitude is determined by atomic and molecular ab-
sorption, scattering in the atmosphere, or by the
solid planetary surface.

Figure 4.4 shows an example of transmission spec-
troscopy for a planet with a solid surface and a
molecularly absorbing atmosphere. At wavelengths
without molecular absorption, the solid surface de-
fines Rp, while at wavelengths with absorption, the
effective radius increases near the altitude where
the optical depth becomes unity, causing a slightly
deeper transit. Detecting such differences allows
molecular species in the atmosphere to be identified.

In this example, the continuum level was as-
sumed to be set by the solid surface, but other
cases include continua shaped by broad-band absorp-
tion, Rayleigh scattering, cloud scattering, the wings
of strong absorption lines, or a pseudo-continuum
formed by many weak lines.

Figure 4.4: Schematic of transmission spectroscopy.
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4.3 Light from Planets
When starlight reaches a planet, part of it is ab-
sorbed and converted into heat, while another part
is returned to space without being thermalized.
The former is re-emitted to space as thermal emis-
sion. If the planet is young, internal heat con-
tributes as well. The latter process returns photons
more or less directly and is generally termed reflec-
tion/scattering. Scattering stochastically redirects
photons within the atmosphere, whereas reflection
discretely changes the direction of propagation at
the surface or cloud tops.

When considering light from exoplanets, one must
properly account for the planetary sphericity. For
emission, the intensity from the entire spherical sur-
face must be considered, and for reflection, the rel-
ative geometry of the star, planet, and observer is
crucial.

Figure 4.5: Incident starlight onto a planet and ther-
mal emission leaving the planetary surface.

The energy received by a planet of radius R can
be written using the stellar flux density S as

Lab = (1−A)πR2S, (4.16)

where πR2 is the planetary cross section (see
Fig. 4.5). Here A is the planet-wide reflectivity
(albedo), and the factor (1 − A) excludes the frac-
tion reflected back to space. If the stellar radiation
is approximated as blackbody emission, the stellar
flux density is

S = L⋆

4πa2 = 4πR2
⋆σT

4
⋆

4πa2 W/m2, (4.17)

where a is the orbital radius, R⋆ the stellar ra-
dius, T⋆ the stellar temperature, and σ the Stefan–
Boltzmann constant. For Earth, S⊙ = 1370 W/m2

is called the solar constant.
If planetary emission is approximated as black-

body radiation at temperature Teq, the emitted
power is

Lem = β
(
4πR2σT 4

eq
)

+ Lint, (4.18)

where Lint is the planet’s internal heat. For young
planets this term can dominate, and such planets are
referred to as self-luminous. The parameter β char-
acterizes the degree of heat redistribution: β = 1
corresponds to instantaneous, uniform redistribu-
tion over the entire globe, while β = 0.5 corresponds
to redistribution over only the dayside hemisphere.
This factor accounts for close-in, tidally locked plan-
ets whose same hemisphere always faces the star, as
with the Moon relative to Earth.

For mature planets, internal emission can typi-
cally be neglected so that Lint = 0. In this case,
the absorbed stellar energy should balance the emit-
ted thermal energy,

Lem = Lab, (4.19)

and the temperature Teq satisfying this condition
(radiative equilibrium) is called the equilibrium tem-
perature. Combining Eqs. (4.16)–(4.19) yields

T 4
eqa

2

T 4
⋆R

2
⋆

= 1−A
4β

, (4.20)

or

Teq =
(

1−A
4β

) 1
4

T⋆

√
R⋆

a
(4.21)

= 396 K
(

1−A
4β

) 1
4
(

T⋆

5800 K

)(
R⋆

R⊙

) 1
2 ( a

1 au

)− 1
2

(4.22)

= 396 K
(

1−A
4β

) 1
4
(
L⋆

L⊙

) 1
4 ( a

1 au

)− 1
2
. (4.23)

We also define the mean stellar flux received at
the planetary surface. From Eq. (4.16),

F⋆ ≡
Lab

4πR2 = (1−A)
4

S (4.24)

= 240
(

1−A
0.7

)(
S

S⊙

)
W/m2, (4.25)
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which relates directly to S. This expression repre-
sents the following picture: subtract the reflected
fraction from the incident stellar energy, and mul-
tiply by the factor 1/4 that accounts for redistribu-
tion by planetary rotation from the illuminated cross
section (the disk in Fig. 4.5) over the full spherical
surface. The mean absorbed flux density and the
equilibrium temperature are related by

σT 4
eq = F⋆/β. (4.26)

Radiance and Irradiance
From a distance, planets and stars appear as point
sources, but on closer view they usually exhibit
three-dimensional structures with continuous den-
sity variations. However, by considering a reference
spherical surface — for example, the planetary sur-
face or the top of the atmosphere for Earth, or the
photosphere for a star — calculations become sim-
pler if we describe radiation from or onto such a
surface. To this end, let us first define quantities
that allow us to quantify radiation from, or onto, a
finite surface element.

Consider the energy dE passing, per unit time and
per unit wavelength, through a solid angle element
dΩ (Fig. 4.6, top) in the direction Ω, emitted from
an infinitesimal surface element dA. Here n denotes
the unit normal vector. Since dE is proportional to
the apparent projected area cos θ dA, we can write

dE = L↑(θ, ϕ) cos θ dAdΩ dν, (4.27)

where the proportionality factor L↑ is defined as the
radiance. This allows us to define radiation indepen-
dent of projection effects. Its units are, for example,
[W/m2/sr/µm].

The net energy flux leaving dA in the direction of
n is called the irradiance E↑, given by

E↑ =
∫

us
dE =

∫
dΩL↑(θ, ϕ) cos θ (4.28)

=
∫ 2π

0
dϕ

∫ π/2

0
dθ L↑(θ, ϕ) cos θ sin θ, (4.29)

where the integration is over the upper hemisphere
(us).

4.4 Emission Spectrum
Let us consider the flux measured at a distance d
from a sphere of radius Rp emitting blackbody radi-

Figure 4.6: (Top) Radiation from or onto a surface
element dA. (Bottom) Incidence of collimated light
from direction (ϑ0, φ0) and reflection per unit solid
angle dΩ into the same direction.
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ation at temperature T . A surface with temperature
T emits blackbody radiation, whose radiance is

L↑dλ = Bλ(T )dλ = 2hc2

λ5
1

exp (hc/λkBT )− 1
dλ.

(4.30)

Consider the radiation cone dΩ from a surface el-
ement dA, and let a telescope with aperture dAtel
located at distance d be the tip of this cone (dΩ =
dAtel/d

2). The energy ∆EdAtel received by dAtel
from dA is then

∆EdAtel = L↑ cosϑ1dΩdA (4.31)

= L↑

d2 cosϑ1dAdAtel. (4.32)

Thus, the irradiance or flux from the surface element
dA as seen by the observer is

∆E = L↑

d2 cosϑ1dA. (4.33)

Integrating over the entire sphere gives

fp =
∫

planet
∆E =

∫
planet

dA
Bν(T )
d2 cosϑ1 (4.34)

= R2
pBν(T )

∫ 2π

0
dφ1

∫ π/2

0
dϑ1 sinϑ1 cosϑ1

(4.35)

= πBν(T )
R2

p

d2 . (4.36)

The total luminosity is obtained by integrating over
frequency and multiplying by the surface area of the
sphere at distance d:

L = 4πd2
∫ ∞

0
dν πBν(T )

R2
p

d2 = 4πR2
pσT

4. (4.37)

On the upward flux

In radiative equilibrium models of planetary atmo-
spheres, one typically considers the flux in a one-
dimensional vertical column, often imposing the sur-
face flux as a boundary condition. Similarly, let us
consider the flux emitted upward from a blackbody
surface element. Integrating over the upward hemi-
sphere yields

Fν(T ) = ∆E =
∫

us
dΩ Bν(T ) cos ϑ1 = πBν(T ).

(4.38)
The total flux is obtained by integrating over fre-

quency:

F (T ) =
∫

dν fν(T ) = σT 4. (4.39)

To zeroth order, the emission spectrum of a planet
can be approximated by blackbody radiation at a
single temperature Tp:

fp(λ)d λ = πBλ(λ, Tp)
R2

p

d2 dλ (4.40)

= 2πhc2

λ5
R2

p

d2

[
exp

(
hc

λkBTp

)
− 1
]−1

d λ,

(4.41)

in some cases.
For example, the Earth’s emission spectrum, with

little atmospheric absorption, can be roughly ap-
proximated by blackbody radiation at surface tem-
peratures T = 200–300 K. However, for gas giants
and brown dwarfs, the blackbody approximation is
inadequate, primarily due to strong molecular ab-
sorption in their atmospheres. The observed spec-
trum is closer to the blackbody emission from atmo-
spheric layers where the optical depth is near unity,
which varies strongly with wavelength due to molec-
ular absorption. These large deviations from black-
body emission are a characteristic signature of exo-
planetary atmospheres.

4.5 Reflection and Scattering
Spectrum

Reflected light is somewhat more complex because
the observed intensity depends on the relative po-
sitions of the reflecting surface and the observer.
However, on average, it can be treated as follows.
In Eq. (4.16), the fraction of stellar energy not ab-
sorbed by the planet is reflected. Thus, the reflected
luminosity is

Lref
p = AπR2

pS = L⋆

4πa2πR
2
pA, (4.42)

where A is the planetary albedo. The mean reflected
flux received at distance d is

⟨f ref
p ⟩ =

Lref
p

4πd2 . (4.43)
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Using the stellar flux

f⋆ = L⋆

4πd2 , (4.44)

this can be written as

⟨f ref
p ⟩ = A

4

(
Rp

a

)2

f⋆. (4.45)

From a spectral perspective, the key point is that
the wavelength dependence arises from the product
A(λ)f⋆(λ), i.e., the stellar spectrum modulated by
the planetary reflection spectrum:

⟨f ref
p ⟩(λ)dλ = 1

4

(
Rp

a

)2

A(λ)f⋆(λ)dλ. (4.46)

Computing the flux as a function of orbital phase,
rather than as a mean, is somewhat more involved
and is omitted here (see Kawahara, Exoplanet Ex-
ploration, Sec. 5.1.1). Here we simply summarize
the result. The reflected flux f ref

p (λ) observed at
distance d is expressed in terms of the starplanet
separation a, the planetary albedo A(λ), the plane-
tary radius Rp, the observed stellar flux f⋆(λ), and
the phase function ϕ(β), which depends on the star-
planetobserver phase angle β:

f ref
p (λ) = 2ϕ(β)

3
A(λ)

(
Rp

a

)2

f⋆(λ), (4.47)

ϕ(β) ≡ [sin β + (π − β) cosβ]/π. (4.48)

Here, ϕ(β) is the Lambert phase function, a function
of the phase angle β = ∠(starplanetobserver). Note,
however, that this relation assumes isotropic scatter-
ing. Strongly anisotropic processes, such as specular
reflection from oceans (ocean glint), may not follow
this approximation.

Although detection of reflected or scattered
starlight from exoplanets is currently limited to spe-
cific cases such as precise space-based photometry
of phase curves, in principle it is a rich source of in-
formation about the two-dimensional distribution of
planetary surface and atmospheric properties. A key
diagnostic in reflected light is the flux ratio between
the star and the planet, known as the starplanet
contrast:

csp(λ) ≡ fp(λ)
f⋆(λ)

. (4.49)

Figure 4.7: Spectrum of Earth.

A smaller contrast makes detection easier, both in
direct imaging and in phase curve measurements.

For the half-phase geometry (β = 90◦), using
Eq. (4.47), the starplanet contrast can be estimated.
For Earth, we obtain

csp ≈ 10−10
(
A

0.3

)(
Rp

R⊕

)2 ( a

1 au

)−2
, (4.50)

while for a hot Jupiter,

csp ≈ 10−6
(
A

0.1

)(
Rp

RJ

)2 ( a

0.05 au

)−2
. (4.51)

4.6 Various Exoplanet Spectra
Figure 4.7 shows the spectrum of Earth. In the case
of Earth, the atmosphere is relatively thin, so the
thermal emission is close to a blackbody spectrum
at the radiative equilibrium temperature. The re-
flection spectrum, on the other hand, corresponds
to the stellar spectrum modulated by atmospheric
absorption.

Figure 4.8 shows the spectrum of a brown dwarf.
It deviates significantly from a pure blackbody spec-
trum.

Figure 4.9 presents the JWST/NIRSpec spectrum
of the hot Saturn WASP-39b, where prominent
molecular absorption features are clearly visible.
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Figure 4.8: Spectrum of a brown dwarf, from SpeX
Prism library. Inspired by [15].
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Figure 4.9: JWST transmission spectrum of WASP-39b [9].
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Chapter 5

Exoplanet Atmosphere

5.1 Molecular Mixing Ratios
in Thermochemical Equi-
librium

In exoplanetary atmospheres, the abundances of
molecules are expected to approach thermochemical
equilibrium under high-temperature and high-
pressure conditions. Even in cases where vertical
transport, photochemistry, or low-temperature
atmospheres dominate, it is useful to understand
the baseline state under thermochemical equilib-
rium. Here, we consider how the molecular mixing
ratios in the atmosphere are determined when
thermochemical equilibrium is established.

Conservation of Elements
In the gas, molecular species such as H2 and H2O,
as well as atomic species like H, ions, and free
electrons, are mixed in appropriate proportions.
These are collectively referred to as species. In
contrast, we also wish to track the total number of
atoms contained in all species, e.g., H, O, C, etc.
These are referred to as elements, distinguished
from species. In this text, we denote elements using
sans-serif fonts, such as H, O, and C.

The Case of a Binary System
As the simplest example, let us consider a two-
species gas composed of hydrogen atoms and
molecules:

2 H −−→←−− H2.

We ask: what composition ratio is reached at ther-
mochemical equilibrium?1 In this case, the species
are H and H2 (Ns = 2), while the only element is H
(Ne = 1).

Let us suppose there are bH atoms of hydrogen
(e.g., 1 mol). The element conservation law is then

nH + 2nH2 = bH. (5.1)

Given pressure P and temperature T , the distribu-
tion of H between H and H2 at equilibrium is deter-
mined by minimizing the Gibbs free energy. At ther-
mochemical equilibrium, the abundances of species
are obtained by

(n∗
H, n

∗
H2) = minimize(nH,nH2) G(T, P, nH, nH2)

(5.2)
subject to nH + 2nH2 = bH, (5.3)
G(T, P, nH, nH2) = nHµH + nH2µH2, (5.4)
nH ≥ 0, nH2 ≥ 0, (5.5)

where µH and µH2 are the chemical potentials of H
and H2. Using the standard-state chemical poten-
tials, these are given by

µH = µo
H(T ) +RT log PH

Pref
(5.6)

= µo
H(T ) +RT log nHP

(nH + nH2)Pref
, (5.7)

µH2 = µo
H2(T ) +RT log PH2

Pref
(5.8)

= µo
H2(T ) +RT log nH2P

(nH + nH2)Pref
. (5.9)

1In reality, a third-body catalyst M makes the process
more realistic, as in 2 H + M −−→←−− H2 + M, but here we ignore
M for mathematical clarity.
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One can verify that ∂G/∂nH = µH and ∂G/∂nH2 =
µH2 hold.

To prepare for generalization, let us solve the con-
strained optimization above using the method of La-
grange multipliers. Define the free parameter vector
x = (nH, nH2, λ)⊤, then

x∗ = minimizex L(T, P,x), (5.10)
L(T, P,x) ≡ G(T, P,x) + λ(nH + 2nH2 − bH),

(5.11)
nH ≥ 0, nH2 ≥ 0. (5.12)

The non-negativity conditions will be checked after-
ward. Setting the derivatives of L(T, P,x) with re-
spect to x equal to zero gives

∂L(T, P,x)
∂x

=

 µH + λ
µH2 + 2λ

nH + 2nH2 − bH

 (5.13)

=

 µo
H(T ) +RT log nHP

(nH+nH2)Pref
+ λ

µo
H2(T ) +RT log nH2P

(nH+nH2)Pref
+ 2λ

nH + 2nH2 − bH

 =

0
0
0

 .

(5.14)

Eliminating λ from the first two components yields

log
(

n2
H

nH2(nH + nH2)
P

Pref

)
= −2µo

H − µo
H2

RT
. (5.15)

Using the third component (the conservation law),
nH + 2nH2 − bH = 0, to eliminate nH2 gives

b2
H − n2

H
4n2

H
= P

Pref
exp

(
−µ

o
H2 − 2µo

H
RT

)
≡ k. (5.16)

Since nH ≥ 0,
nH

bH
= 1√

4k + 1
. (5.17)

From the conservation law,
nH2

bH
= 1

2

(
1− 1√

4k + 1

)
. (5.18)

Note that these quantities are expressed per hydro-
gen element bH. In practice, one can simply set
bH = 1 mol for calculation.

The volume mixing ratios (VMRs) are then

VMR(H) = nH

ntot
= 1

2

(√
k2 + 4k − k

)
, (5.19)

VMR(H2) = nH2

ntot
= 1

2

(
2 + k −

√
k2 + 4k

)
.

(5.20)

Figure 5.1: Volume mixing ratios in thermochemical
equilibrium for 2 H −−→←−− H2.

The temperature dependence of the mixing ratios
is shown in Fig. 5.1.

Multi-Component Systems‡

Next, let us consider a multi-element system. As
an example, take the elements H,C,O, and the
species CO, H2, CH4, H2O. These constitute the ma-
jor molecular components in hydrogen-rich atmo-
spheres. The relevant chemical reaction can be writ-
ten as

CO + 3 H2 −−→←−− CH4 + H2O.

In terms of elements, the decomposition of each
species is

H2 −−→←−− 2 H
H2O −−→←−− 2 H + 1 O
CH4 −−→←−− 4 H + 1 C
CO −−→←−− 1 C + 1 O,

or, including zero components explicitly,

H2 −−→←−− 2 H + 0 C + 0 O
H2O −−→←−− 2 H + 0 C + 1 O
CH4 −−→←−− 4 H + 1 C + 0 O
CO −−→←−− 0 H + 1 C + 1 O.
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From the right-hand sides, we define the formula
matrix:

A ≡

2 2 4 0
0 0 1 1
0 1 0 1

 .

Let the vector of species abundances be n =
(nH2 , nH2O, nCH4 , nCO)⊤, and the vector of elemen-
tal abundances be b = (bH, bC, bO)⊤ (note the dis-
tinction between elemental abundances and species).
Then the elemental conservation law is expressed as

An = b. (5.21)

For a multi-element system, the equilibrium abun-
dances are obtained by minimizing the Gibbs free
energy:

n∗ = minimizenG(T, p,n)
subject to An = b, ni ≥ 0, (5.22)

G(T, p,n) ≡ µ(T, P,n)⊤n, (5.23)

µ(T, p,n) = µ◦(T ) +RT log
(

p

ntot
n

)
, (5.24)

where the total number density and normalized pres-
sure are defined as

ntot =
∑

i

ni, (5.25)

p ≡ P/Pref . (5.26)

For the CO, H2, CH4, H2O system, Eq. (5.22) be-
comes

L(T, p,n,λ) =
∑

i=CO, H2, CH4, H2O

µi(T )ni

+ λH(2nH2 + 4nCH4 + 2nH2O − bH)
+ λC(nCO + nCH4 − bC)
+ λO(nCO + nH2O − bO). (5.27)

Here we follow the implementation of NASA/CEA
(Chemical Equilibrium with Applications) by Gor-
don and McBride [6, 4]. In CEA, minimization of
the Gibbs free energy is carried out using a quadratic
Lagrange multiplier method. That is,

(n∗,λ) = minimize(n,λ) L(T, p,n,λ), (5.28)
L(T, p,n,λ) = G(T, p,n) + λ⊤ (An− b) , (5.29)

where at this stage the non-negativity condition
ni ≥ 0 is not yet enforced.

To find stationary points of L(T, p,n,λ), we de-
fine, with the optimization variables y = (n,λ),

f(y) ≡ ∂

∂y
L(T, p,y). (5.30)

The solution is obtained by solving

f(y∗) = 0 (5.31)

using Newtons method, yielding y∗ = (n∗,λ∗).
Next, computing the n-component of Eq. (5.30)

gives

∂

∂n
L(T, p,n,λ) = µ(T, P,n) +A⊤λ, (5.32)

where we have used the thermodynamic iden-
tity ∂nG(T, p,n) = µ(T, P,n)2 together with
λ⊤(An) = (A⊤λ)⊤n and ∂x(S⊤x) = S. Note that
Eq. (5.32) is linear in λ.

The λ-component simply enforces the conserva-
tion relations:

∂

∂λ
L(T, p,n,λ) = An− b. (5.33)

Using Eq. (5.24), the system of equations to be
solved by Newtons method in Eq. (5.31) is

µ◦(T )
RT

+ log
(

p

n∗
tot

n∗
)

+ A⊤λ∗

RT
= 0, (5.34)

An∗ − b = 0, (5.35)

where n∗
tot is a function of n∗:

n∗
tot =

∑
i

n∗
i . (5.36)

Here, the CEA algorithm employs several tricks.
First, to solve Eq. (5.31), we add ntot as an inde-
pendent variable. Since ntot originally depended
on n via Eq. (5.25), we include this relationnamely
Eq. (5.25)as a constraint (rather than as a prereq-
uisite). Furthermore, we reparameterize n and ntot
by taking logarithms, i.e., we adopt q = ln n and
qtot = lnntot as independent variables. This trans-
formation naturally enforces the non-negativity con-
straints ni ≥ 0, and, by working in log-space, yields

2This can be verified directly from Eq. (5.24).
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numerically stable computations over a wide dy-
namic range.

With these changes, we introduce the new variable
set z = (q,λ, qtot), and the system to be solved is

Fn(z) ≡ µ◦(T )
RT

+ q − qtot u + log pu + A⊤λ

RT
,

(5.37)
Fλ(z) ≡ Aeq − b = 0M , (5.38)

Ftot(z) ≡
∑

i

eqi − eqtot = 0, (5.39)

whose solution satisfies

Fn(z) = 0M , (5.40)
Fλ(z) = 0M , (5.41)
Ftot(z) = 0. (5.42)

Here 0M denotes the M -dimensional zero vector.
The solution is z∗ = (q∗,λ∗, q∗

tot). For brevity we
sometimes write F (z) = (Fn(z),Fλ(z), Ftot(z)).

Newtons method requires the Jacobian J(z) =
∂F /∂z:

J(z) =


∂Fn

∂q

∂Fn

∂λ

∂Fn

∂qtot
∂Fλ

∂q

∂Fλ

∂λ

∂Fλ

∂qtot
∂Ftot

∂q

∂Ftot

∂λ

∂Ftot

∂qtot



=

 EM
A⊤

RT
−u

Y (q) ZM 0M

(eq)⊤ 0⊤
M −eq

tot

 , (5.43)

where EM is the M ×M identity matrix, ZM is the
M ×M zero matrix, and M is the number of ele-
ments (the length of b). The matrix Y (q) is defined
by

Y (q) = Adiag(eq),

i.e., with components

Yij = Aije
qj . (5.44)

From Eq. (2.60), the Newton update satisfies

J(zk) ∆z = −F (zk), i.e., EM
A⊤

RT
−u

Y (q) ZM 0M

(eqk )⊤ 0⊤
M −e(qtot)k


 ∆q

∆λ
∆qtot



= −

 Fn(zk)
Fλ(zk)
Ftot(zk)

 .

(5.45)

Thus the update ∆z = (∆q,∆λ,∆qtot) satisfies

∆q + A⊤∆λ

RT
−∆qtot u

= −µ◦(T )
RT

− qk + (qtot)k u− log pu− A⊤λk

RT
,

(5.46)
Y (qk)∆q = A (eqk ⊙∆q) = b−Aeqk , (5.47)

(eqk )⊤∆q − e(qtot)k ∆qtot = e(qtot)k −
∑

i

e(qi)k .

(5.48)

Only Eq. (5.46) involves ∆λ and λk. Since we
are not directly interested in λ, we introduce a new
update variable

π ≡ −∆λ + λ

RT
, (5.49)

and update q,π, qtot instead. (Because π is a throw-
away variable, we omit ∆ on it.) Then Eq. (5.46)
becomes

∆q = A⊤π + ∆qtot u− gk(T ), (5.50)

gk(T ) ≡ µ◦(T )
RT

+ qk − (qtot)k u + log pu. (5.51)

Hence, once π and ∆qtot are determined, we can
compute the desired ∆q. Substituting Eq. (5.50)
into Eqs. (5.47) and (5.48) yields the following sys-
tem of M + 1 linear equations:

A diag(eqk )A⊤ π + ∆qtot Ae
qk

= A (eqk ⊙ gk(T )) + b−Aeqk , (5.52)

(Aeqk )⊤π + ∆qtot

(∑
i

e(qk)i − e(qtot)k

)
= (eqk )⊤gk(T ) + e(qtot)k −

∑
i

e(qi)k . (5.53)
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Figure 5.2: Electronic states of carbon monoxide.
The horizontal axis is the internuclear distance (car-
bonoxygen).

In the above, we retained qk and (qtot)k explicitly,
but in code it is often clearer to revert eq to n. De-
fine

B ≡ Adiag(nk)A⊤, (5.54)
bk ≡ Ank, (5.55)
δbk ≡ b− bk, (5.56)

δntot,k ≡
∑

i

nk,i − (ntot)k, (5.57)

where nk,i denotes the i-th component of nk. Then
we obtain

B π + ∆qtot bk = A (nk ⊙ gk(T )) + δbk,
(5.58)

bk · π + δntot,k ∆qtot = nk · gk(T )− δntot,k. (5.59)

This linear system in π and ∆qtot is referred to as
the Reduced Gibbs Iteration Equations.

5.2 VibrationalRotational
Transitions of Diatomic
Molecules

In diatomic molecules, quantum-mechanical transi-
tions arise from combinations of electronic, vibra-
tional (nuclear), and rotational (nuclear) level tran-
sitions. For the electronic levels, because nuclear mo-
tion is much slower than electronic motion, one can

solve the electronic wave equation with the internu-
clear distance r fixed and obtain the corresponding
electronic eigenenergies.

As r is slowly varied, the ground-state electronic
eigenenergy changes continuously with r. Figure 5.2
shows (a subset of) the electronic eigenenergies of
carbon monoxide as a function of the internuclear
distance r. In the context of molecular absorption
in exoplanet atmospheres, it is generally safe to as-
sume that the electronic state is the ground state (
in the case of CO, X1Σ+)3. Thus, the ground-state
electronic eigenenergy can be written as a function
of r as V (r), and the two nuclei can be regarded as
moving in the potential V (r).

column – Labels of Electronic States †

For diatomic molecules, the magnitude Λ of the pro-
jection of the total electronic orbital angular momen-
tum onto the molecular axis (Z axis), Lz , is con-
served, and Λ serves as a label for the electronic
state. The spectroscopic symbols corresponding to
each Λ are summarized in Table 5.1. As in atoms,
spin multiplicity exists for molecules. With total spin
S (S = 0, 1/2, 1, 3/2, · · · ), the multiplicity is 2S + 1,
written to the upper left of Λ:

2S+1Λ. (5.60)

If the diatomic molecule consists of two identical
atoms (homonuclear diatomic), the wavefunction un-
der exchange of the two nuclei transforms as Ψ→ ±Ψ.
The symbol u (ungerade) is appended as a subscript
when the sign changes, and g (gerade) when it does
not. In addition, for Σ states, the sign change under
reflection through a plane containing the molecular
axis is indicated by a superscript ±. Altogether, an
electronic state can be labeled, for example, as

2Σ+
u . (5.61)

Table 5.2 lists the ground states of representative di-
atomic molecules. Among electronic states with the
same spin multiplicity, one may also prepend capital
letters X, B, C, D, · · · (including the ground state) in
increasing energy order. For states with spin multi-
plicity different from that of the ground state, lower-
case letters b, c, d, · · · are sometimes used in increas-
ing energy order; e.g., X 1Σ+

g (ground state), B 1Σ+
u ,

C 1Σ+
u , , a 3Σ,

Let us now consider the energy levels of a freely
moving diatomic molecule, such as carbon monox-
ide (CO) in an atmosphere, which consists of two
nuclei with different masses m1 and m2 and mul-
tiple electrons. Assuming the electrons remain in
the ground state, the system can be treated as two

3Electronic transitions are occasionally considered as well.
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L 0 1 2 3 · · ·
S P D F · · ·

Degeneracy 1 3 5 7 (2L+1)
Λ 0 1 2 3 · · ·

Σ Π ∆ Φ · · ·
Degeneracy 1 2 2 2

Table 5.1: Correspondence between the electronic
orbital angular momentum L for atoms and the ab-
solute value of the molecular-axis projection Lz for
diatomic molecules, Λ, and the spectroscopic sym-
bols. For atoms the degeneracy is 2L + 1, whereas
for molecules (except for Λ = 0), the two projections
Lz = ±Λ lead to twofold degeneracy.

Molecule Ground State
H2

1Σ+
g

N2
1Σ+

g

O2
3Σ−

g

CO 1Σ
CN 2Σ
NO 2Π

Table 5.2: Electronic ground states of representative
diatomic molecules.

nuclei moving in the potential V (r), where r is the
internuclear distance. As illustrated in the ground
state of Fig. 5.2, V (r) attains its minimum value (we
define it by Ve) at r = re ∼ 1.2, and the two nuclei
undergo rotational motion and vibrational motion
about the equilibrium distance re.

Assuming that V (r) is known, we focus on the
nuclear wave equation. With nuclear coordinates
taken as in Fig. 5.3, the nuclear wave equation can
be written as(

− ℏ2

2m1
∇2

1 −
ℏ2

2m2
∇2

2 + V (r)
)
ψ(r1, r2)

= Eψ(r1, r2), (5.62)

where r1 and r2 are the position vectors of nu-
clei 1 and 2, respectively, and their separation is
r = |r1 − r2|. The operators ∇2

1 and ∇2
2 are the

Laplacians for nuclei 1 and 2; ℏ = h/(2π) with h
the Planck constant; E is the eigenvalue of the nu-
clear wave equation; and ψ(r1, r2) is the nuclear
wavefunction. By solving Eq. (5.62), we consider
vibrationalrotational transitions of the nuclei.

Figure 5.3: Coordinates of the nuclei in a diatomic
molecule.

Define the center-of-mass coordinate

R = m1r1 +m2r2

m1 +m2
,

and the relative coordinate r = r1 − r2. With the
reduced mass µ = (m−1

1 +m−1
2 )−1 and the total mass

M = m1 +m2, the wave equation in center-of-mass
and relative coordinates becomes(
− ℏ2

2µ
∇2

r −
ℏ2

2M
∇2

R + V (r)
)
ψ(r,R) = Eψ(r,R).

(5.63)

Here we have defined the Laplacians

∇2
R = ∂2

∂X2 + ∂2

∂Y 2 + ∂2

∂Z2 , ∇2
r = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .

♣ Eq. (5.63) †

Let (X, x), (Y, y), and (Z, z) denote the first, second,
and third Cartesian components of R and r, respec-
tively. From the transformations

x = x1 − x2, X =
m1x1 + m2x2

M
,

we have
∂

∂x1
=

∂x

∂x1

∂

∂x
+

∂X

∂x1

∂

∂X
=

∂

∂x
+

m1

M

∂

∂X
,(5.64)

which leads to
1

m1

∂2

∂x2
1

=
1

m1

∂2

∂x2 +
m1

M2
∂2

∂X2 +
2

M

∂

∂x

∂

∂X
.

(5.65)
Similarly,

∂

∂x2
=

∂x

∂x2

∂

∂x
+

∂X

∂x2

∂

∂X
= −

∂

∂x
+

m2

M

∂

∂X
,(5.66)
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so that

1
m2

∂2

∂x2
2

=
1

m2

∂2

∂x2 +
m2

M2
∂2

∂X2 −
2

M

∂

∂x

∂

∂X
.

(5.67)

From (5.65) and (5.67),

1
m1

∂2

∂x2
1

+
1

m2

∂2

∂x2
2

=
1
µ

∂2

∂x2 +
1

M

∂2

∂X2 . (5.68)

Likewise,

1
m1

∂2

∂y2
1

+
1

m2

∂2

∂y2
2

=
1
µ

∂2

∂y2 +
1

M

∂2

∂Y 2 , (5.69)

1
m1

∂2

∂z2
1

+
1

m2

∂2

∂z2
2

=
1
µ

∂2

∂z2 +
1

M

∂2

∂Z2 . (5.70)

Adding these and multiplying by −ℏ2/2 gives

−
ℏ2

2m1
∇2

1 −
ℏ2

2m2
∇2

2 = −
ℏ2

2µ
∇2

r −
ℏ2

2M
∇2

R. (5.71)

For Eq. (5.63), separate variables by writing
ψ(R, r) = Φ(R)ϕ(r) and E = ER + Er, where ER

and Er are the eigenenergies of the center-of-mass
and relative motions, respectively. Then

Φ(R)
(
− ℏ2

2µ
∇2

rϕ(r) + V (r)ϕ(r)− Erϕ(r)
)

+ ϕ(r)
(
− ℏ2

2M
∇2

RΦ(R)− ERΦ(R)
)

= 0, (5.72)

which yields the center-of-mass and relative-motion
equations:

− ℏ2

2M
∇2

RΦ(R) = ERΦ(R), (5.73)

− ℏ2

2µ
∇2

rϕ(r) + V (r)ϕ(r) = Erϕ(r). (5.74)

The center-of-mass equation describes the transla-
tional motion of the molecule as a whole (e.g., plane-
wave solutions).

Next, for the relative-motion equation, introduce
spherical coordinates (r, φ, θ) and separate variables
as

ϕ(r) = ϕr(r)
r

Y (φ, θ). (5.75)

The radial equation for ϕr(r) reduces to a one-
dimensional wave equation in the effective potential
Veff(r) = V (r) + W (r), where W (r) is the centrifu-
gal term arising from rotation. We now determine
W (r).

The Laplacian in spherical coordinates is

∇2
r,φ,θ = 1

r2

(
∂

∂r
r2 ∂

∂r
+∇2

φ,θ

)
, (5.76)

∇2
φ,θ = 1

sin θ
∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2 , (5.77)

and the spherical harmonics Ylm(φ, θ) satisfy

∇2
φ,θYlm(φ, θ) + J(J + 1)Ylm(φ, θ) = 0, (5.78)

where J = 0, 1, 2, . . . is the rotational quantum num-
ber and m is an integer with |m| ≤ J .

Substituting Eq. (5.75) into the relative-motion
equation and expressing the Laplacian in spherical
coordinates, we obtain

− ℏ2

2µ

(
1
r2

∂

∂r
r2 ∂

∂r
+ 1
r2∇

2
φ,θ

)
ϕr(r)
r

Y (φ, θ)

+ V (r)ϕr(r)
r

Y (φ, θ) = Er
ϕr(r)
r

Y (φ, θ), (5.79)

which separates to

r2

ϕr(r)
∂2

∂r2ϕr(r) + 2µr2

ℏ2 (Er − V (r))

= −
∇2

φ,θY (φ, θ)
Y (φ, θ)

. (5.80)

Setting the right-hand side to J(J + 1) identifies
Y (φ, θ) with the spherical harmonics Ylm(φ, θ).

♣ Equation (5.80) †

∂

∂r

(
r2 ∂

∂r

ϕr

r

)
=

∂

∂r

(
r2 rϕ′

r − ϕr

r2

)
=

∂

∂r
(rϕ′

r − ϕr) = ϕ′
r + rϕ′′

r − ϕ′
r

= r
∂2

∂r2 ϕr(r) (5.81)

Then the radial wave equation becomes

− ℏ2

2µ
∂2

∂r2ϕr(r) +
(
V (r) + ℏ2J(J + 1)

2µr2

)
ϕr(r)

= Erϕr(r), (5.82)

which can be regarded as one-dimensional motion in
the effective potential

Veff(r) = V (r) + ℏ2J(J + 1)
2µr2 . (5.83)
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Hence,

W (r) = ℏ2J(J + 1)
2µr2 . (5.84)

For the eigenvalue Er of the relative motion, we
denote quantum states by the pair (ν, J) of vibra-
tional quantum number ν and rotational quantum
number J , with the initial state (ν, J) = (νi, Ji) and
the final state (ν, J) = (νf , Jf ). Consider transi-
tions in a diatomic molecule such as carbon monox-
ide with ∆ν = νf − νi = 1 and ∆J = Jf − Ji = ±1.
Denote the eigenvalues of the relative motion for the
initial and final states by Er = Er,i and Er = Er,f ,
respectively, and define the transition energy ∆E =
Er,f − Er,i.

Make the coordinate transformation q = r − re.
Then

Veff(q) ≈ Ve + µ

2
ω2q2 + ℏ2J(J + 1)

2µ(q + re)2 (5.85)

≈ Ve + µ

2
ω2q2 + ℏ2J(J + 1)

2µr2
e

, (5.86)

so the wave equation for ϕr(q) is

− ℏ2

2µ
∂2

∂q2ϕr(q) + µ

2
ω2q2ϕr(q) = E′

rϕr(q) (5.87)

E′ = Er − Ve −
ℏ2J(J + 1)

2µr2
e

, (5.88)

i.e., the harmonic-oscillator wave equation. The en-
ergy eigenvalues of a harmonic oscillator with angu-
lar frequency ω, with vibrational quantum number
ν = 0, 1, 2, . . . , are

E′ = ℏω
(
ν + 1

2

)
, (5.89)

so the eigenvalues of the original wave equation are

Er = Ve + ℏω
(
ν + 1

2

)
+ ℏ2J(J + 1)

2µr2
e

. (5.90)

Let

Er(ν, J) = Ve + ℏω
(
ν + 1

2

)
+ ℏ2J(J + 1)

2µr2
e

. (5.91)

Since Er,f = E(νf , Jf ) and Er,i = E(νi, Ji), we have

∆E = Er,f − Er,i = E(νf , Jf )− E(νi, Ji) (5.92)

= ℏ(νf − νi) + ℏ2

2µr2
e

[
Jf (Jf + 1)− Ji(Ji + 1)

]
(5.93)

= ℏ∆ν + ℏ2

2µr2
e

(Jf − Ji)(Jf + Ji + 1) (5.94)

= ℏ∆ν + ℏ2

2µr2
e

∆J (2Ji + ∆J + 1). (5.95)

Substituting ∆ν = 1, ∆J = 1 into Eq. (5.95)
yields

∆E = ℏω + ℏ2

µr2
e

(1 + Ji). (5.96)

Substituting ∆ν = 1, ∆J = −1 into Eq. (5.95) gives

∆E = ℏω − ℏ2

µr2
e

Ji. (5.97)

These results imply that, centered on ℏω, the
transitions form a comb with spacing ℏ2

µr2
e

to either
side. Figure 5.4 shows the cross sections of CO for
∆ν = 1, displaying this comb-like pattern. The se-
ries of lines given by Eq. (5.96), extending toward
higher wavenumber (to the right), is the R-branch,
and that of Eq. (5.97) is the P-branch.

5.3 Line Profiles and Line
Strengths

Although the transition energies of molecules are
discrete due to quantum-mechanical effects, the ab-
sorbed energy is broadened around those discrete en-
ergies for various reasons. This broadening is called
broadening. In planetary atmospheres, the three im-
portant types are

• Doppler broadening due to thermal motion
(and microturbulence),

• natural broadening due to the uncertainty prin-
ciple,

• pressure broadening that depends on pressure
and arises from van der Waals forces between
molecules.
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Figure 5.4: R-branch and P-branch cross sections in the ∆ν = 1 band of carbon monoxide.

First, broadening due to thermal motion is caused
by the Doppler shift ν = ν̂(1 + vx/c) when an atom
has a line-of-sight velocity vx owing to thermal mo-
tion. Because the distribution function of vx follows
the Maxwell velocity distribution,

P (vx) =
√

m

2πkBT
e

− mv2
x

2kB T (5.98)

=
√

m

2πkBT
e

− mc2(ν−ν̂)2

2kB T ν̂2 , (5.99)

the line is broadened accordingly. Using the half
width at half maximum (HWHM),

γD = ν̂

√
2(log 2)kBT

mc2 , (5.100)

the Doppler-broadened line profile is

gD(ν; ν̂; γD) =
√

log 2
π

1
γD

exp

[
− log 2

(
ν − ν̂
γD

)2
]
,

(5.101)

i.e., Doppler broadening follows a Gaussian distri-
bution. Velocity dispersion from microturbulence is
likewise often approximated by a Gaussian, but is
not commonly considered at present.

By contrast, pressure broadening and natural
broadening are both represented by the Lorentz pro-
file,

gL(ν; ν̂; γL) = γL/π

(ν − ν̂)2 + γ2
L

, (5.102)

where γL is the HWHM.
In planetary atmospheres, pressure broadening

(van der Waals broadening) is especially impor-
tant. For Earths atmosphere, one often uses the
air-broadening coefficient γair

L,W, defined as γL,W at
p0 = 1 atmosphere and T0 = 296 K, and computes

γL,W(p, T ) = γair
L,W

p

p0

(
T0

T

)α

, (5.103)

where α is the temperature exponent (typically
around 0.5, but it varies). Because pressure broad-
ening originates from van der Waals forces exerted
by surrounding molecules, it depends on the back-
ground gas composition. In particular, many exo-
planet atmospheres are H2/He-dominated, so values
differ from those under Earth air, and care is needed.

Natural broadening is the line broadening arising
from the uncertainty principle. Using the Einstein
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A coefficient,

γL,n = A

4πc
= 0.222

4πc

( ν

cm−1

)2
[cm−1], (5.104)

which reflects the excited-state survival probability
∝ e−At and the uncertainty relation. Unlike pres-
sure broadening, natural broadening is more signifi-
cant at low pressure.

When both the Doppler and Lorentz profiles ap-
ply, the line profile is their convolution, called the
Voigt profile:

gV (ν; ν̂) = (gL ∗ gD)(ν; ν̂)

=
∫ ∞

−∞
dν′ gL(ν − ν′; ν̂; γL) gD(ν′ − ν̂; ν̂; γD).

(5.105)

If both pressure and natural broadening contribute,
one may use

γL = γL,W + γL,n, (5.106)

because the convolution of two Lorentzians satisfies

gL(ν; ν̂, γL,W) ∗ gL(ν; ν̂, γL,n)

=
∫ ∞

∞
dν′ gL(ν − ν′; ν̂; γL,W) gL(ν′ − ν̂; ν̂; γL,n)

(5.107)

= (γL,W + γL,n)/π
(ν − ν̂)2 + (γL,W + γL,n)2

= gL(ν; ν̂, γL,W + γL,n), (5.108)

so the HWHMs add. Note also that Lorentzian
wings are not thought to extend indefinitely; beyond
a certain distance from line center (on the order of
102 cm−1), a rapid cutoff (sub-Lorentzian behavior)
is expected. Although this effect is not yet fully un-
derstood, one should take care when computing over
wide wavenumber ranges.

Because line profiles are normalized as∫
dν g(ν) = 1, (5.109)

the dimension of g(ν) is cm.
Consider the absorption of photons by molecules.

In molecular spectroscopy, it is common to express
energies as wavenumbers by dividing by hc; we fol-
low that convention. Since we consider absorption,
the final state lies at higher energy than the ini-
tial state; we therefore relabel the final and initial

states as upper and lower, respectively. For example,
Elow = Eνi,Ji

/hc and Eup = Eνf ,Jf
/hc.

The strength of each absorption line is propor-
tional to the number of molecules in the lower state
Elow, because absorption proceeds via stimulated ab-
sorption from that level. However, stimulated emis-
sion induced by the incident light reduces the effec-
tive absorption and must be included. Under local
thermodynamic equilibrium,

nlow

n
= glow

Q(T )
exp
(
−hcElow

kBT

)
, (5.110)

where glow is the degeneracy, n is the total popula-
tion, and Q(T ) is the partition function. The cor-
rection for stimulated emission is (1 − e−hcν̂/kBT ),
where ν̂ is the absorption wavenumber, i.e., the level
spacing ν̂ = Eup − Elow

4.
Including the coefficients, the line strength is de-

fined so that the cross section is

σ2(ν) = S(T ) g(ν), (5.111)

i.e., S(T ) has the dimension of cm. One obtains

S(T ) = gup

Q(T )
A

8πcν̂2 e
−c2Elow/T

(
1− e−c2ν̃/T

)
,

(5.112)

where c2 ≡ hc/kB = 1.4387773 cm K and A is the
Einstein A coefficient.

♣ Eq. (5.112) †

The effective absorption equals stimulated absorption
(Blu) minus stimulated emission (Bul):

S(T ) =
hcν̂

c

(
nlow

n
Blu −

nup

n
Bul

)
. (5.113)

Under LTE,

nup

nlow
=

gup

glow
exp
(
−

hc(Eup − Elow)
kBT

)
(5.114)

=
gup

glow
e−hcν̂/kBT . (5.115)

From detailed balance,

glowBlu = gupBul, (5.116)

A = 2πhcν̂3Bul. (5.117)

4We avoid writing this quantity directly with E because,
spectroscopically, the relevant observable is the wavenumber
at the absorption center.
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Figure 5.5: The four vibrational modes of methane.

Using these,

S(T ) =
hν̂

4π

nlow
n

Blu

(
1− e−hcν̂/kBT

)
(5.118)

=
gup

Q(T )
A

8πcν̂2 e−hcElow/kBT
(

1− e−hcν̃/kBT
)

,

(5.119)

where Eq. (5.110) has been used.

5.4 Rovibrational Transitions
of Various Molecules‡

Methane
As shown in Fig. 5.5, methane has four vibrational
modes, ν1, ν2, ν3, and ν4, of which the infrared-
active modesi.e., those that absorb photons in the
infraredare ν3 and ν4. These have strong funda-
mental bands at 3.253.45µm and 7.58.0µm, respec-
tively. In addition, numerous hot bands arising
from the polyad structure appear elsewhere. The
polyad structure originates from the near relation-
ships ν1 ≃ ν3 ≃ 2ν2 ≃ 2ν4 ≃ 3000 cm−1, and is
characterized by the polyad number

P = 2(ν1 + ν3) + ν2 + ν4. (5.120)

The polyads are named Monad (P = 0), Dyad
(P = 1), Pentad (P = 2), Octad (P = 3),
Tetradecad (P = 4), Icosad (P = 5), Triacontad
(P = 6), and Tetracontad (P = 7). Their ener-
gies are roughly 1500P cm−1. For example, the
methane absorption seen near 1.6µm in the H
band of brown dwarfs corresponds to the P = 4
Tetradecad [12].

Band Heads in Diatomic Molecules
In the harmonic-oscillator approximation the poten-
tial is taken as a quadratic function of the internu-

clear separation, and in Eq. (5.85) the centrifugal
terms dependence on internuclear distance was ig-
nored. In practice this approximation describes the
CO ∆ν = 1 transitions well (Fig. 5.4). However, for
larger vibrational changes ∆ν these approximations
break down as the internuclear distance changes ap-
preciably, and a structure known as a band head ap-
pears. The potential can be written

Veff(q) ≈ Ve + µ

2
ω2q2 + ℏ2J(J + 1)

2µr2
e [1 + (q/re)2]

(5.121)

≈ ℏ2J(J + 1)
2µr2

e

[
1− 2 q

re
+ 3

(
q

re

)2

+ · · ·

]
,

(5.122)

so when q/re becomes large the effective centrifugal
term weakens. Moreover, as indicated by the ground
electronic state in Fig. 5.2, the potential itself de-
parts from a quadratic form as one moves away from
equilibrium. Treating these effects perturbatively
(details omitted) leads to an energy expression that
is quadratic in X = (ν + 1/2) and Y = J(J + 1).
Writing a form that neglects quadratic terms other
than the cross term (XY ), we have

Er(ν, J) = Ve + ℏω
(
ν + 1

2

)
+BνJ(J + 1),

(5.123)

Bν = ℏ2

2µr2
e

− α0

(
ν + 1

2

)
. (5.124)

This reflects the picture that, as the vibrational am-
plitude increases in an anharmonic potential, the
mean bond length increases and the rotational con-
stant Bν decreases.

From Eq. (5.124) we find Bν+1 − Bν = −α0, so
the R and P branches become

hν̂R
line(Ju) = hνν + 2BJu − α0J

2
u, (5.125)

hν̂P
line(Ju) = hνν − 2B(Ju + 1)− α0(Ju + 1)2,

(5.126)

B ≡ B0 + 1
2
α0, (5.127)

i.e., quadratic functions.
If α0 > 0, the R-branch has a turning point at

Ju = B/α0 > 05. Thus a maximum in wavenum-
5By contrast, the turning point of the P-branch is at

−B/α0 < 0, so there is no turning point in the physical
region Jl = Ju + 1 > 0for α0 > 0.
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ber (minimum in wavelength) appears in the rovibra-
tional transitions, and many lines cluster near this
energy (lower panel of Fig. 5.6); this is the band head.
Figure 5.6 shows an example of the CO band head
near 2.3µm. Note that the horizontal axis here is
wavelength. When the temperature populates many
levels near the band head, absorption near the band
head becomes strong (upper panel of Fig. 5.6).

Combining Eqs. (5.125) and (5.126) into a single
expression,

hν̂line(J ) = hνν − 2BJ − α0J 2, (5.128)

with

J =

{
Ju, (J > 0),
−Jl, (J < 0),

(5.129)

one obtains the Fortrat diagramnamed after R. For-
tratwhen plotting J on the vertical axis against line-
center wavenumber on the horizontal axis (Fig. 5.7).
There is no line at J = 0, which corresponds to the
vibrational energy difference; this is called the band
origin.

5.5 Gravity and Planetary At-
mospheres

A planetary atmosphere is gravitationally bound to
the planetary surface; in other words, gravity largely
sets the overall atmospheric structure. To clarify the
relationship between gravity and atmospheric struc-
ture, we simplify the atmosphere with the following
assumptions:

• The atmospheric layer is thin and can be ap-
proximated as a planeparallel slab.

• The atmosphere is isothermal.

• The atmosphere behaves as an ideal gas.

• There is no vertical bulk motion; pressure and
gravity are in balance.

Under these assumptions we introduce the atmo-
spheric scale height, a key length scale.

Equation of State for an Ideal Gas
For a singlecomponent ideal gas, the equation of
state in terms of pressure P , temperature T , and
number density n [cm−3] is

P = nkBT. (5.130)

Using Avogadros number NA = 6.0221367 × 1023,
this can also be written as

P = R′n′T, (5.131)

where R′ = NAkB = 8.3144598 × 107 [erg/K/mol]
is the universal gas constant, and n′ is the molar
number density [mol cm−3]. Expressing Eq. (5.130)
in terms of the mass density ρ = µmHn [g cm−3]
(with µ the mean molecular weight and mH the pro-
ton mass) gives

P = kB

µmH
ρT. (5.132)

Introducing the specific gas constant R [erg/g/K],

P = RρT, (5.133)

R ≡ kB

µmH
. (5.134)

Thus one must distinguish whether one is working
with molar number density using R′, or with (mass
or number) density using kB or R. To remain con-
sistent with conventions in astrophysics, we will pri-
marily use ordinary number/mass densities. In me-
teorology, however, molar notation is common; care
is required when comparing with or using values
from that literature.

Isothermal Hydrostatic Equilibrium
In a thin atmospheric layer near the planetary sur-
face, the gravitational acceleration

g = −dϕ
dr

= GMp

r2 (5.135)

(where ϕ = GMp/r is the gravitational potential)
can be approximated as constant with height r. Un-
der this condition, hydrostatic equilibrium,

dP (r)
dr

= ρ
dϕ

dr
= −ρg, (5.136)
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Figure 5.6: Example of a band head in the CO 2.3µm band (X 1Σ+, ∆ν = 2). Many transitions accumulate
at the point where the energy of the Jupper levels turns over.

Figure 5.7: Fortrat diagram for CO in the case ∆ν = 2, νlower = 0.
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combined with the equation of state (5.132) yields
the differential equation

dP

dr
= −P

H
, (5.137)

whose solution is

P (r) = P0 exp
(
−r − r0

H

)
≡ Pthin(r), (5.138)

with P0 the pressure at r0 as the boundary condition.
Here

H ≡ kBT

µmHg
(5.139)

≈ 8.4 km
(

T

300 K

)( µ
30

)−1
(

g

980 cm/s2

)−1

(5.140)

is the (pressure) scale height. Thus a simple pic-
ture emerges: the characteristic vertical extent of
the atmosphere is set by the ratio of thermal energy
to gravity. Because a length scale for atmospheric
height requires thermal energy, temperature infor-
mation is essential.

From Eq. (5.139), for example, hotter planets
have larger scale heights and are therefore more
readily observable. For rocky planets, where the
bulk density is nearly independent of radius, H
scales inversely with radius. Hence a super-Earth
with twice Earths radius has twice the radius but
roughly half the atmospheric thickness, so the dif-
ficulty of atmospheric characterization by transmis-
sion spectroscopy is not drastically changed. From
Eq. (5.138), the height above r0 at a level r > r0
inferred from the pressure is

∆r = (r − r0) = H log
(

P0

P (r)

)
. (5.141)

If we consider a thin isothermal layer of the atmo-
sphere with geometric thickness dz(> 0) and pres-
sure thickness dP (> 0), then from Eq. (5.139)

dP

P
= dz

H
. (5.142)

Thus, the change in height normalized by the scale
height equals the fractional change in pressure. Triv-
ially, from Eq. (5.136), the conversion between
height and pressure coordinates is

dz = dP

ρg
. (5.143)

5.6 Atmosphere and Molecu-
lar Abundances

In the previous section we assumed isothermality,
but in general an atmosphere is not isothermal. As
seen above, to express atmospheric height in units of
length one needs temperature information; when the
atmosphere is not isothermal, this quickly becomes
complicated. A commonly used alternative is to use
pressure in place of a geometric height coordinate.
In this case, the vertical temperature structure is
shown with pressure on the vertical axis and tem-
perature on the horizontal axis; because pressure in-
creases downward, the pressure axis is often plotted
inverted to indicate altitude.

When considering thermal emission, transmission,
or reflection from an atmosphere, we need to con-
vert between optical depth and pressure. From
Eq. (5.136),

dr = −dP
ρg
, (5.144)

so, for an absorption cross section σ, the differential
form of the optical depth is

dτ = −nσ dr = σ

µmHg
dP. (5.145)

(The sign depends on where τ is measured from.
Here we define r → ∞ as τ → 0.) Note that this
expression does not explicitly depend on tempera-
ture. In general, however, the cross section depends
on temperature and pressure, and the mean molec-
ular weight depends (strictly) on pressure through
the vertical composition profile; thus,

dτ = σ(T, P )
µ(P )mH g

dP. (5.146)

Here we continue to assume a thin atmosphere so
that g is independent of pressure.

Multicomponent Atmospheres
What if the atmosphere is a multicomponent mix-
ture? Let mH be the proton mass. The partial
pressure of the i-th constituent is

Pi = kBniT = RρiT. (5.147)
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Now the relationships between mass density and
number density are

ρ =
N∑

i=1
ρi = mH

N∑
i=1

µini (5.148)

= mH

(
N∑

i=1
µi
ni

n

)
n = mH µn,(5.149)

µ ≡
N∑

i=1
ξiµi, (5.150)

where we defined the total number density n =∑N
i=1 ni. Here µ is the mean molecular weight, and

ξi = ni/n is the volume mixing ratio (VMR). The
VMR is related to partial pressure by

Pi = ξiP. (5.151)

6 Dividing both sides of Eq. (5.150) by µ gives

1 =
N∑

i=1
Xi, (5.152)

Xi = µi

µ
ξi (5.153)

= ρi

ρ
, (5.154)

where Xi is the mass mixing ratio (MMR), i.e., the
mass fraction of species i in the total gas.

The equation of state written with mass density
uses the mean molecular weight µ and takes the
same form as for a single component:

P =
N∑

i=1
Pi = kBnT = RρT, (5.155)

R ≡ kB

µmH
. (5.156)

6A VMR is the ratio of the number of molecules of species
i to the total number of gas molecules. Why it is called
a volume (rather than number) mixing ratio is historically
rooted and somewhat unclear.

Retrieving Molecular Abundances and
the Fundamental Degeneracy
For a multicomponent mixture, the opacity of
species i follows from Eqs. (5.151) and (5.153):

dτi = −niσi dr = σi

µmHg
dPi (5.157)

= ξiσi

µmHg
dP (5.158)

= Xiσi

µimHg
dP. (5.159)

In Eq. (5.159), σi, µi, and mH are set by
physics/chemistry and independent of the specific
atmosphere, while Xi and g are system-specific and
are, from an observational standpoint, quantities to
be inferred. However, dτi depends only on the com-
bination Xi/g, so these two cannot be determined
independently. Since the total optical depth (for
molecular opacity only) is the linear sum

dτ = −
N∑

i=1
niσi dr =

N∑
i=1

dτi, (5.160)

what a spectrum constrains is not the absolute
molecular abundance, but the ratio Xi/g (mass mix-
ing ratio divided by gravity). We refer to this as the
fundamental degeneracy.

For transiting systems, g is determined from the
RVs and the transit radius, so the fundamental
degeneracy is not problematic. In cases relying
solely on planetary thermal emissione.g., direct spec-
troscopy of directly imaged planets or brown dwarf-
sif only molecular line opacity is visible at the photo-
sphere, the fundamental degeneracy cannot be bro-
ken. If continuum opacity (e.g., from hydrogen) is
also detected, the degeneracy can be broken [11].

5.7 Clouds
For many observed spectra in the retrieval of exo-
planet and brown dwarf atmospheres, a cloud model
is required. In practical analyses, cloud models are
often treated as a gray, spectrally flat, continuous
opacity. Here, however, we introduce models that
delve into cloud microphysics7. In particular, we

7For an in-depth discussion of cloud microphysics, see
Pruppacher and Klett [19].
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present the cloud model of Ackerman and Marley
[2], a seminal paper on exoplanet cloud modeling.
Clouds form when atmospheric gas is assumed to
condense into solids or liquids. In Earths atmo-
sphere, clouds are primarily due to H2O and occur
as liquid-water clouds and ice clouds. Table 5.3 lists
the main condensate species considered for exoplan-
ets and brown dwarfs.

Table 5.3: Typical cloud particle constituents and
their material densities.

Common name Formula Material density
δc (g/cm3)

water H2O 1
NH3

Fe (solid) Fe 7.875
ferrous oxide FeO 5.987
phosphate H3PO4

KCl
Na2S
TiO
SiC
VO

hematite Fe2O3 5.275
magnetite Fe3O4 5.200
fayalite FeSiO4 4.393
corundum Al2O3 3.987
quartz SiO2 2.648
rutile TiO2 4.245
enstatite MgSiO3 3.194
forstelite Mg2SiO4 3.214

Terminal Velocity of Cloud Particles
Consider a cloud particle falling until it reaches a
steady speed at which the drag force Fd plus buoyant
force Fa balances gravity. This speed is called the
terminal velocity. The force balance is

Fd + Fa = m(r)g, (5.161)

wherem(r) is the particle mass and g is gravitational
acceleration. Let δc be the material density of the
condensate and ρ the atmospheric density. Then

m(r) = 4π
3
r3δc, (5.162)

Fa = 4π
3
r3ρg, (5.163)

so that

Fd = 4π
3
r3(δc − ρ)g (5.164)

≈ 4π
3
r3δcg, (5.165)

where the last approximation neglects buoyancy
since typically δc ≫ ρ.

In general, the drag force Fd can be written in
terms of the terminal velocity vf and the drag coef-
ficient Cd as

Fd = Cd

ρv2
f

2
(πr2), (5.166)

(derivation omitted). Using the dimensionless
Reynolds number

Nre = 2ρvfr

η
, (5.167)

we can rewrite

Fd = 6πηrvf

(
CdNre

24

)
, (5.168)

and combining with Eq. (5.164) gives

vf (r) = 2
9η
gr2(δc − ρ)

(
CdNre

24

)−1

, (5.169)

where η is the dynamic viscosity.
The coefficient Cd depends on the Reynolds num-

ber. For Nre ≪ 1 (Stokes flow),

Cd = 24
Nre

. (5.170)

For very small particles, slip at the particle surface
becomes important; the Cunningham slip correction
(1 + 1.26NKn), with NKn = kBT/

√
2πr2PL the

Knudsen number, is applied. The resulting termi-
nal velocity is

vsf
f (r) = 2

9η
gr2(δc − ρ)(1 + 1.26NKn), (5.171)

which scales as r2. At larger Reynolds numbers such
a simple approximation is not valid; however, for
Nre ≈ 0.01–300, vf is roughly proportional to r,
and for Nre > 300 it is roughly proportional to r1/2.

For the dynamic viscosity, Rosner [22] gives

η = 5
16

√
πmkBT

πd2
(kBT/ε)0.16

1.22
, (5.172)
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where Rosner [22] tabulates the molecular diameter
d and the LennardJones potential parameter relative
to kB for various atmospheric species.

At intermediate Reynolds numbers, consider the
Davies number8 ND = CdN

2
re. Eliminating vf from

Eq. (5.169) using the definition in Eq. (5.167), we
obtain

ND = CdN
2
re = 32

3η2 gr
3ρ(δc − ρ). (5.173)

Using an empirical fit y = f(x) to the measured
relation between x = logND and y = logNre, we
find Nre, and from Eq. (5.167) the terminal velocity
becomes

vf = η

2ρr
ef(log ND). (5.174)

Using the values in Table 10.1 of Pruppacher and
Klett [19], the fit

f(x) = −0.0088x2 + 0.85x− 2.49 (5.175)

works well (Fig. 5.8). For Nre > 500, following Ack-
erman and Marley (2001) [2], we adopt Cd = 0.45,
yielding

vf = η

2ρr

√
ND

Cd
. (5.176)

Figure 5.8: Relation between Davies number and
Reynolds number.

8Also called the Best number.

Summarizing, the terminal velocity is

vf =



2
9η
gr2(δc − ρ)(1 + 1.26NKn)

for ND < 42 (Nre < 2),
η

2ρr
exp
(
− 0.0088 log2 ND + 0.85 logND − 2.49

)
for 42 ≤ ND < 105 (2 ≤ Nre < 500),

η

2ρr

√
ND

Cd

for 105 ≥ ND (500 ≥ Nre)
(5.177)

with boundary conditions chosen to ensure continu-
ity.
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Figure 5.9: Cloud particle radius vs. terminal veloc-
ity for Earths atmosphere and gravity at T = 300
K.

Problem

Consider water expelled by human conversa-
tion or breathing. According to the WHO
definition, droplets with diameter ≥ 5m are
called “droplets,” while those with diameter
≤ 5m are called “aerosols” or “droplet nu-
clei.” If aerosols with diameter 5m are emit-
ted from a mouth located 1.5 m above the
ground, how many minutes do they remain
suspended in still air (neglecting airflow and
evaporation)?
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Vapor Pressure Curve and Cloud Base
Consider clouds formed by phase transitions of
a single constituent between gassolid or gasliquid.
Clouds form when, above some altitude, the gas
undergoes a phase transition into a solid or liquid.
While cloud formation and dissipation involve com-
plex physics, here we simply define the cloud base as
the height at which the vapor pressure curve equals
the partial pressure. Let the volume mixing ratio of
the gaseous constituent be ξv(P ). Then the cloud
base is the (P, T ) satisfying

P (T ) = Psat(T )/ξv(P ), (5.178)

as illustrated in Fig. 5.10. The saturation vapor pres-
sure Psat(T ) can be written, using the latent heat l
and the ClausiusClapeyron relation, as

Psat(T ) = Psat,0e
−l/RT (5.179)

(Exoplanet Exploration, ğ6.2.3, p. 153).
For clouds composed of multiple gaseous con-

stituents, there remains the question of how to deter-
mine the “gaseous constituent” volume mixing ratio
ξv(P ). One may compute it via chemical equilib-
rium, or assume the maximum producible amount.
In the latter approach, for example, for enstatite
(MgSiO3), the limiting reagent determined from the
elemental volume mixing ratios gives

ξv = min [ ξ(Mg), ξ(Si), ξ(O)/3 ]. (5.180)

Ackerman and Marley Cloud Distribu-
tion Model
We outline, with several modifications, the Acker-
man & Marley (2001) [2] (AM01) model, which
is widely used for clouds in exoplanet and brown
dwarf atmospheres. For simplicity, consider a single
species that condenses to form clouds. For example,
water clouds in an atmosphere have two states: the
gaseous state (v) and the condensed (cloud) state (c).
We denote the sum of the two by tot. To avoid con-
fusion, we consider mass mixing ratios rather than
volume mixing ratios9. The total mass mixing ratio

9For volume (number) mixing ratios, one must define what
is being counted. For instance, one might count the total
number of molecules in all cloud particles, or the sum of the
numbers of cloud particles themselves, whose sizesand thus
molecular countsdiffer.
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Figure 5.10: Definition of the cloud base. The inter-
section of the temperaturepressure profile with the
vapor pressure curve divided by the volume mixing
ratio gives the cloud base.

Xtot(z) is the sum of the cloud mass mixing ratio
Xc(z) and the gas mass mixing ratio Xv(z):

Xtot(z) = Xc(z) +Xv(z). (5.181)

The basic equation balances vertical transport
against sedimentation (precipitation) of conden-
sates, assuming a representative particle size:

−Kzz
∂

∂z
Xtot(z) − vf (z)Xc(z) = 0, (5.182)

where Kzz(z) is the vertical eddy diffusivity (units
cm2/s), and vf (z) is the typical settling velocity of
cloud particles.

To solve Eq. (5.182), we need an additional con-
straint among the three Xs. Here we assume

Xc(z)
Xtot(z)

= const. ≡ kc. (5.183)

Then the differential equation becomes

∂

∂z
Xc(z) = −kc vf (z)

Kzz(z)
Xc(z). (5.184)

From Eq. (5.184), if we may assume vf (z) ∝
Kzz(z), the ODE is easily solved. AM01 effectively
imposes such an assumption: the settling velocity
vf (z) is proportional to the vertical eddy velocity
scale veddy(z) = Kzz(z)/L, where L is a character-
istic convective length scale taken as a constant10.

10AM01 also presents a formulation where this is not con-
stant; the constant case is presented as a heuristic.
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With a constant fsed, we assume

vf (z) = fsed veddy(z) = fsed Kzz(z)/L (5.185)
(the fsed assumption)

In this case, above the cloud base the solution is

Xc(z) = Xc(0) exp
(
−kcfsed

L
z

)
. (5.186)

Assuming L = H(z=0) = H0 and that the
zP relation is determined hydrostatically by H0,
Eq. (5.186) can be written

Xc(P ) =

Xc(0)
(
P

P0

)fsed/kc

, P ≤ P0,

0, P > P0,

(5.187)

where P = P0 is the cloud-base pressure. An exam-
ple cloud mixing-ratio profile is shown in Fig. 5.11.

Figure 5.11: Example of a cloud mass mixing ratio
profile.

We now introduce a particle size distribution. De-
fine the number density of cloud particles per unit
radius as

q(r) ≡ dNc(r)
dr

, (5.188)

where Nc(r) is the number density of particles with
radii ≤ r. Thus,∫ ∞

0
q(r) dr =

∫ ∞

0

dNc(r)
dr

dr = Nc(∞) ≡ N,

(5.189)

the total number density of cloud particles. We use
the symbol N (instead of the gas number density
symbol n) to emphasize that we are not counting
the number of molecules but the number of parti-
cles. If nc denotes the number density of molecules
constituting the cloud particles, then the mass mix-
ing ratio relates as

Xc = ρc
ρ

= µc
µ

nc
n
, (5.190)

where µc is the molecular weight of the condensate
species. Here ρc is the mass density occupied by
all cloud particles per unit volume of atmosphere
(g/cm3). Do not confuse this with the intrinsic ma-
terial density of a particle δc (also in g/cm3).

Let mc be the mass of an individual cloud particle;
then dmc/dr is the mass distribution with respect to
radius. Assuming spherical particles,

dmc
dr

= 4
3
πr3δc

dNc(r)
dr

= 4
3
πr3δc q(r). (5.191)

While Kzz and the settling speed vf (z; r) at each
particle size r could be specified individually, the
fsed assumption generally does not hold if treated
strictly size-by-size.

A strongest (but restrictive) way to enforce the
fsed assumption is to set, for each size,

vf (z; r) = fsed veddy(z) = fsed Kzz(z)/L, (5.192)

but this loses the size dependence of the settling
velocity. Indeed, Eq. (5.182) is not asserted to hold
for every particle size but for some representative
value; hence we push the fsed assumption onto the
representative averaging.

Let the representative operation for settling speed
be the mass-weighted mean:

vf (z) =
∫
vf (mc) dmc

Mc(z)
=
∫∞

0 vf (z; r) (dmc/dr) dr∫∞
0 (dmc/dr) dr

=
∫∞

0 dr vf (z; r) r3q(r)∫∞
0 dr r3q(r)

, (5.193)

where the total cloud mass per unit volume at height
z is Mc(z) = Xc(z) ρ (with ρ the atmospheric mass
density).

To satisfy the fsed assumption, we require

fsed
Kzz(z)
L

=
∫∞

0 dr vf (z; r) r3q(r)∫∞
0 dr r3q(r)

. (5.194)
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AM01 assumes a lognormal size distribution in
the layer at height z:

q(r) dr = N(z) pz(r) dr (lognormal size distribution),

(5.195)
pz(r) =

1
r
√

2π log σg

exp

{
− 1

2(log σg)2

[
log
(

r

rg(z)

)]2}
,

(5.196)

with log σg > 0 (σg > 1)11. Note that σg controls
the distribution width, and AM01 adopts a common
value across layers. Using the moment formula for
the lognormal distribution,

Ek ≡
∫ ∞

0
rk pz(r) dr = rk

g (z) exp
(
k2 log2 σg

2

)
,

(5.197)

we have

Mc(z) = Xcρ =
∫
dr

4πδcr
3

3
q(r)

= N(z)
4πδcr

3
g(z)

3
exp
(

9
2

log2 σg

)
, (5.198)

so the particle number density N(z) is

N(z) = Xcρ

m̃
, (5.199)

m̃ ≡
4πr3

g

3
δc exp

(
9
2

log2 σg

)
, (5.200)

where m̃ is interpreted as the mean mass per particle
linking cloud mass density to number density.

From the requirement in Eq. (5.194),∫ ∞

0
dr vf (z; r) r3q(r) = fsed

Kzz(z)
L

E3, (5.201)

we must assume a form for vf (r; z). From the previ-
ous section, despite some dependence on Reynolds
number, the terminal velocity approximately follows
a power law in r. Thus we assume a power-law set-
tling speed

vf (r, z) = Arα (power-law settling assumption).
(5.202)

11In the usual notation for the lognormal distribution, σ
would denote what we write as log σg ; here we follow AM01,
acknowledging the potential for confusion.

From Eq. (5.201), we obtain

A = Kzz(z)
rα

g (z)
fsed

L

E3

Eα+3

= Kzz(z)
rα

g (z)
fsed

L
exp
[
−α

2 + 6α
2

log2 σg

]
, (5.203)

so that

vf (r; z) = Kzz(z)
rα

g (z)
fsed

L
exp
[
−α

2 + 6α
2

log2 σg

]
rα

(5.204)

= Kzz(z)
L

(
r

rw(z)

)α

, (5.205)

where

rw(z) = rg(z) f−1/α
sed exp

[(
α+ 6

2

)
log2 σg

]
.

(5.206)

With this distribution, the fsed assumption holds.
Because Eq. (5.204) is a power law, rw(z) does not
set a typical scale per se; it merely gives, at a given
z, the particle size whose settling velocity balances
vertical mixing.

To close the system we must determine rg(z) and
α. For rg(z), one may use the physical terminal-
velocity model of ğ5.7 to find the r such that vf (r) =
Kzz(z)/L, then identify that with rw and infer rg

via Eq. (5.177). AM01 further recommends fitting
α by matching the r-dependence of the physically
motivated terminal-velocity model near this range.

Features of the AM01 Cloud Model (constant
kc and fsed)

Given fsed, Kzz(z), σg, and kc, the verti-
cal distribution of the cloud mixing ratio in
each layer is given by Eq. (5.186), andassum-
ing a lognormal size distributionthe particle
size distribution in each layer is specified by
Eqs. (5.195), (5.199), and (5.206).

With the abundance of each particle size known
for each layer, the cloud cross section follows by sum-
ming the scattering cross sections (Rayleigh or Mie)
over the size distribution.
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Cross Section When Size Dependence
Is Negligible
Consider the extinction cross section when the ex-
tinction efficiency Qe(r) is constant, independent of
particle size:

Qe(r) = Qe (constant). (5.207)

The same development applies for absorption and
scattering by replacing Qe with Qa or Qs.

σext(z) =
∫∞

0 dr Qeπr
2q(r)

N
(5.208)

= Qeπr
2
g(z) e2 log2 σg ≡ Qeπr

2
geo, (5.209)

defining the mean geometric radius

rgeo ≡ elog2 σg rg = rw(z) f1/α
sed exp

[
−α+ 4

2
log2 σg

]
.

(5.210)

The optical depth increment in each atmospheric
layer is then

dτ =
∫ ∞

0
dr Qeπr

2q(r) dz = N σext(z) dz (5.211)

= Qeπr
2
geo N dz. (5.212)

This expresses the optical depth in terms of the
mean geometric radius and the particle number den-
sity. Using Eqs. (5.199) and (5.200), we can convert
from number density to mass-density form:

dτ = 3ρQe

4δcrg(z)
exp
[
−5

2
log2 σg

]
Xc(P ) dz (5.213)

= Xc(z)
3ρQe

4δcrw(z) f1/α
sed

exp
[(

α+ 1
2

)
log2 σg

]
dz

(5.214)

= 3Qe Xc(z) ρ
4δc reff(z)

dz, (5.215)

where, following AM01, we defined the effective ra-
dius

reff(z) ≡ rw(z) f1/α
sed exp

[
−
(
α+ 1

2

)
log2 σg

]
(5.216)

= rg(z) exp
[

5
2

log2 σg

]
. (5.217)

Note that this definition does not coincide with the
mean geometric radius.

Using Eq. (5.213) and converting to pressure co-
ordinates via Eq. (5.143), we obtain

dτ = 3Qe Xc(z)
4rg δc g

exp
(
−5

2
log2 σg

)
dP, (5.218)

which emphasizes that (rg, σg) are the inputs.
Overall,

τ = −
∫ P0

0
Xc(P ) 3Qe ρ

4δc reff

(
dz

dP

)
dP (5.219)

= Xc(0)
∫ P0

0
dP

3Qe ρ

4δc reff

H

P

(
P (z)
P0

)fsed/kc

(5.220)

≈ 3
4

Qe Xc(0)P0

δc g reff (1 + fsedkc)
, (5.221)

where the last step used P0/H = gρ0 and ρ ≈ ρ0
(Exoplanet Exploration, p. 137, Eqs. 6.5 and 6.6,
and p. 139, Eq. 6.28)12. In general Qe depends on
size, but in the large-particle limit Qe → 2, yielding
the geometric cross section.

Cross Section for Mie Scattering
In general, using the size-dependent extinction effi-
ciency Qe(r) from Mie theory,

dτ =
∫ ∞

0
dr Qe(r)πr2 q(r) dz, (5.222)

one computes the optical depth. Although Mie cal-
culations can be demanding, convenient software ex-
ists; for example, PyMieScatt is a Python-based Mie-
scattering package.

12The corresponding AM01 Eq. (18) contains a typograph-
ical error missing a factor of 1/δc.
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Chapter 6

Atmospheric Inference from Spectra

The overall workflow for inferring atmospheric
properties from spectra is as follows.

1. Set up an atmospheric forward model: con-
struct a parametric atmospheric model and im-
plement code that generates a spectrum from
the model.

2. Specify a probabilistic model: define the error
model associated with the spectral data and the
prior distributions for the atmospheric model.

3. Perform Bayesian inference: compute the like-
lihood from the observed spectrum and the
model-generated spectrum, and obtain the pos-
terior distributions of the parameters in the at-
mospheric model.

In the most agnostic “free-retrieval” approach -
i.e., one that includes minimal physico-chemical as-
sumptionsthe atmospheric forward model treats the
temperaturepressure (TP) profile itself as an un-
known to be retrieved. One may assume an appro-
priate parametrized profile, or adopt a more flexible
profile using a Gaussian process. Molecular abun-
dances can likewise be treated as parameters. For
high-temperature atmospheres, one can instead as-
sume thermochemical equilibrium and retrieve ele-
mental abundances.

Once the atmospheric forward model has been
specified, the next step is spectrum generation. Be-
low, we describe this spectrum-synthesis component
in detail. Moreover, in retrievals, opacity calcula-
tions often limit both computational speed and accu-
racy. Therefore, we also describe practical methods
for opacity computation. The Bayesian inference
procedure is essentially the same as in Chapter 3.

6.1 Modeling Transmission
Spectra

Figure 6.1 illustrates the geometry during transit.
In transmission spectroscopy the quantity of interest
is the wavelength dependence of the transmittance
through the thin atmospheric layer near the plane-
tary radius. We therefore define a reference radius
R0 below which the transmission is sufficiently low
(i.e., effectively opaque), and consider only the effec-
tive occulted area of the atmospheric annulus above
R0, denoted A(λ) (hereafter, the annular shadow;
panel C of Fig. 6.1).

For example, if we are interested only in the tran-
sit depth, writing the planetary and stellar radii at
wavelength λ as Rp(λ) and R⋆(λ), respectively, we
have

δ(λ) =
R2

p(λ)
R2

⋆(λ)
= πR2

0 +A(λ)
πR2

⋆(λ)
, (6.1)

so we need only model the annular shadow.1
We now derive A(λ) for the annular region

(Fig. 6.1C). Adopt the coordinates shown in
Fig. 6.1B/D. The annular shadow area is

A =
∫ 2π

0

∫ ∞

R0

[1− Tλ(rc, ϕ)] rc drc dϕ

= π

(
2
∫ ∞

R0

[1− Tλ(rc, ϕ)] rc drc

)
, (6.2)

and the effective wavelength-dependent planetary

1If ingress/egress is modeled, only a portion of the annulus
contributes to the transmission and the geometry is more
complicated; we do not consider that here.
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Figure 6.1: Coordinate system for transmission spectroscopy. A: a planet transiting in front of its host
star. B: magnified view of the planetary limb. C: the annular shadow region. D: a cut through the planet
along the dashed line in panel B. The z-direction, along which starlight propagates, is called the chord
direction. The right-hand panel corresponds to Fig. 4.13 in Exoplanet Exploration.

radius can be written

Rp(λ) =

√
R2

0 + 2
∫ ∞

R0

[1− Tλ(rc, ϕ)] rc drc. (6.3)

Here Tλ(rc, ϕ) is the chord-direction transmittance
at cylindrical radius rc and wavelength λ. It is re-
lated to the chord optical depth t by

Tλ(rc) = e−t. (6.4)

For brevity we drop the subscript λ below.
Let z be the coordinate along the chord direction.

The chord optical depth is

t(rc) =
∫ ∞

−∞
κ(r) ρ(r) dz = 2

∫ ∞

0
κ(r) ρ(r) dz,

(6.5)

which we evaluate using a layered-atmosphere model.
Denote by tn the chord optical depth associated with
the n-th layer. From Fig. 6.2,

tn = 2
∑

k

κkρk ∆z(n)
k . (6.6)

Here ∆z(n)
k is the chord-path thickness across the

k-th layer segment intercepted by the chord tangent
to layer n. Relating this to the vertical (1D) optical
depth of the k-th layer, ∆τk = κkρk∆rk, we obtain

tn =
∑

k

Cnk ∆τk, (6.7)

Cnk ≡
2∆z(n)

k

∆rk
= 2

√
r2

k−1 − r2
n −

√
r2

k − r2
n

rk−1 − rk
, (6.8)

with rN−1 = R0. The matrix C = {Cnk} is a lower-
triangular Chord Geometric Matrix.

Let N be the total number of layers (n =
0, 1, . . . , N − 1). The radii of the layer boundaries
satisfy

rn−1 = rn + ∆hn. (6.9)

We adopt the boundary convention that the lowest
atmospheric layer is n = N−1 and define R0 = rN−1
as the reference radius from the planet center to the
lower boundary of the lowest layer; below rN−1 no
light is transmitted. Thus

rn =

 R0 +
N−1∑

j=n+1
∆hj , n < N − 1,

R0, n = N − 1.
(6.10)

The upper boundary of the top layer (n = 0) defines
the top of atmosphere (TOA) radius rtop.

Because the layers are specified by (Tn, Pn), we
convert to geometric thickness using the local scale
height,

∆hn = Hn
∆Pn

Pn
, (6.11)

Hn = kBTn

gnµnmH
. (6.12)

The local gravitational acceleration is

gn = G (Mp + ∆Mn)
r2

n

, (6.13)
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where ∆Mn =
∑n

j=N−1 ∆mj is the cumulative at-
mospheric mass above rn. In practice ∆Mn ≪ Mp

and can usually be neglected.
Numerically, one proceeds upward from the bot-

tom: for n = N − 1, N − 2, . . . , 0 solve for ∆hn

and rn. The boundary conditions are rN = R0
and gN = GMp/r

2
N . We also set h0 = 0 so that

the opacity of the very topmost layer is excluded.
While iterating, compute Cnk for each layer n and
k = n, . . . , N − 1; this yields the lower-triangular
Chord Geometric Matrix.2

6.2 Schwarzschild Equation∗

Let dEν be the energy carried by radiation within
a wavenumber interval dν that, in the direction n,
passes through an infinitesimal area dS (with surface
normal k) into a solid angle dΩ during an infinitesi-
mal time dt. The specific intensity Iν is then defined
by

dEν = Iν (n·k) dS dΩ dν dt. (6.14)

Radiation incident on a small cylindrical volume
is attenuated by scattering and absorption in pro-
portion to Iν . The proportionality constant is the
extinction coefficient κν . The term opacity is used
in various ways; here we adopt it to mean this ex-
tinction coefficient with units [cm2 g−1]. Since κν

is defined at a single frequency, it is strictly the
monochromatic opacity, though frequency-averaged
opacities are also commonly referred to simply as
opacities. If there is no emission within the cylin-
der, the energy removed per unit time by absorption
and scattering over a path length ds in material of
density ρ is

−κνIν ρ ds dΩ dν dt = dIν dΩ dν dt, (6.15)

so that

dIν = −κνIν ρ ds. (6.16)

Define the emitted specific intensity from within the
cylinder via the emission coefficient ην by

dIν = ην ρ ds. (6.17)

2Equivalently, after all rn have been computed, one may
evaluate Cnk in a single pass using Eq. (6.8).

Combining the two gives

dIν = −κνIν ρ ds+ ην ρ ds. (6.18)

Introducing the source function

Jν ≡
ην

κν
, (6.19)

the radiative transfer equation becomes

dIν

κνρ ds
= −Iν + Jν . (6.20)

Define the optical depth by

dτ = −κνρ dz, (6.21)

and, taking a Cartesian axis z with ds = µdz and
µ = cos θ, we obtain

µ
dIν

dτ
= Iν − Jν , (6.22)

which is the Schwarzschild equation.
Attenuation (extinction) of electromagnetic radi-

ation is the sum of true absorption and scattering,

extinction = absorption + scattering. (6.23)

Processes such as photoionization (converting pho-
ton energy to ionization energy plus electron ki-
netic energy) or collisional de-excitation after ra-
diative excitation (thermalizing the photon energy)
contribute to absorption. Scattering includes elas-
tic re-emission at the same frequency after exci-
tation, as well as scattering by electrons and by
atoms/molecules. Let the absorption and scattering
contributions to the opacity be the true absorption
coefficient µa and the scattering coefficient µs , re-
spectively:

κν = µa + µs. (6.24)

Then the emission coefficient can be written using
the mean intensity

Jν ≡ ⟨Iν⟩ = 1
4π

∫
P (Ω) Iν dΩ, (6.25)

where P (Ω) is the scattering phase function, as

ην = µaBν + µsJν . (6.26)
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Figure 6.2: Directions of optical-depth integration in the layered model.

Thus the source function becomes

Jν = µaBν + µsJν

µa + µs
= (1− ω0)Bν + ω0Jν ,

(6.27)

where

ω0 ≡
µs

µa + µs
(6.28)

is the single-scattering albedo. In other words, with
scattering the radiative transfer equation involves
the source function

Jν = ω0Jν + (1− ω0)Bν . (6.29)

6.3 Modeling Thermal Emis-
sion Spectra

Generating an emission spectrum requires solving
the radiative transfer equation. When scattering

can be neglected, the calculation becomes compar-
atively simple. In the pureabsorption case, the
Schwarzschild equation can be integrated in closed
form, allowing one to propagate the specific intensity
layer by layer. The emergent flux is then obtained at
the end by integrating the topofatmosphere (TOA)
intensity over direction.

Let τ be the vertical optical depth measured down-
ward from the TOA. The Schwarzschild equation is

µ
dIν

dτ
= Iν − Jν , (6.30)

so, defining τ ′ ≡ τ/µ and viewing Iν as a function
of µ, we have

İν(µ) = Iν(µ)− Jν(µ), (6.31)

where the dot denotes differentiation with respect to
τ ′. Multiplying by e−τ ′ and integrating from τ ′

A to
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τ ′
B yields the formal solution

Iν(τ ′
B ;µ) e−τ ′

B = Iν(τ ′
A, µ) e−τ ′

A −
∫ τ ′

B

τ ′
A

Jν(µ) e−τ ′
dτ ′,

(6.32)

the integral form of the Schwarzschild equation.
Dropping the wavenumber subscript for brevity,

and considering pure absorption (ω0 = 0), equa-
tion (6.29) implies that Jν(µ) reduces to the (an-
gleindependent) Planck function Bν . Focusing only
on outwardgoing intensity (µ ≥ 0), write I(τ, µ) =
I+(τ, µ)3. Choosing the opticaldepth origin at the
evaluation point (τB = 0) gives

I+(0;µ) = I+(τ ′
A, µ) e−τ ′

A +
∫ τ ′

A

0
Bν(τ) e−τ ′

dτ ′.

(6.33)

Setting τA = τs (the bottom boundary) and in-
troducing the transmission T(z;µ) ≡ e−τ(z)/µ (with
z = 0 at the bottom of the atmosphere), the
monochromatic outward intensity can be written

I+(µ) = Bν(Ts) T(z = 0;µ) +
∫ ∞

0
Bν(T ) dT(z)

dz
dz,

(6.34)

where Ts is the bottom temperature and τ ′
s = τs/µ.

Discretizing in terms of the transmission T(z)
gives

I+(µ) = Bν(Ts) TNlayer−1(µ)

+
Nlayer−1∑

j=0
Bν(Tj)

(
Tj−1(µ)− Tj(µ)

)
,

(6.35)

where, consistent with the definition Tj =
exp
(
−
∑j

i=0 ∆τi/µ
)

, one must precompute the cu-
mulative transmission up to each layer j to evaluate
(6.35).4

Finally, integrate over angle to obtain the emer-
gent flux at the TOA:

F+(0) = 2π
∫ 1

0
µ I+(µ) dµ. (6.36)

3In this convention one would define I(τ, µ) = −I−(τ, µ)
for µ < 0.

4Irwin et al. index layers from the bottom upward; here
we index from the top downward.

This corresponds to an Nstream (discreteordinates)
radiative calculation in the noscattering limit; a di-
rect extension to scattering media is not straightfor-
ward.

6.4 Modeling Scat-
tered/Reflected Spec-
tra (TwoStream
Approximation)‡

When scattering and reflection are present,
fluxbased twostream approximations are commonly
used. Here we proceed as follows.

For a planeparallel atmosphere, the radiative
transfer equation is

µ
dIν

dτ
= Iν − Jν . (6.37)

First, since extinction includes both absorption
and scattering, we write

κν = µa + µs, (6.38)

where µa is the true absorption coefficient and µs

the scattering coefficient.
For the emission, let us include thermal emission

(C) and scattering of upward radiation from below
(D). Cases EH correspond to external illumination
(e.g., starlight) and are needed when modeling re-
flected stellar light, but we will not consider them
here. In this setup the emission coefficient is the
sum of thermal and scattering contributions,

ην = µaBν + µs
1

4π

∫
dΩP(Ω) Iν , (6.39)

where, in the first term on the righthand side,
neglecting scattering would recover absorption =
emission (Kirchhoff’s law). Thus we assume lo-
cal thermodynamic equilibrium (LTE), under which
the emission spectrum is Planckian by detailed bal-
ance.5 The second term represents scattering; P(Ω)
encodes the angular dependence of the scattering
phase function (e.g., for scattering by thin clouds).

The source function is then

Jν = ην

κν
= (1− ω0)Bν + ω0

4π

∫
dΩP(Ω) Iν , (6.40)

5This assumption can break down in the upper atmo-
spherefor Earth, above roughly the mesosphere.
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where

ω0 ≡
µs

µa + µs
(6.41)

is the singlescattering albedo.
It is convenient to describe the angular distribu-

tion of the specific intensity using its angular mo-
ments, i.e., integrals over solid angle weighted by
powers of µ. Define the global (fullsphere) angular
average

⟨F⟩ ≡ 1
4π

∫
dΩP(Ω)F = 1

4π

∫
dϕ

∫ 1

−1
dµP(Ω)F .

(6.42)

We denote the zeroth, first, and second moments by

Jν ≡ ⟨Iν⟩, (6.43)
Hν ≡ ⟨µIν⟩, (6.44)
Kν ≡ ⟨µ2Iν⟩. (6.45)

Using the zeroth moment, the source function can
be written compactly as

Jν = ην

κν
= ω0Jν + (1− ω0)Bν . (6.46)

Accordingly, the radiative transfer equation be-
comes

µ
dIν(Ω)
dτ

= Iν(Ω)− ω0Jν − (1− ω0)Bν . (6.47)

In the twostream approximation, we split quan-
tities into an upward (outgoing) flux and a down-
ward (incoming) flux. We integrate over the up-
per hemisphere (US) and the lower hemisphere (LS).
Keeping the moment equations in mind, define the
hemispheric angularaverage operator for an arbi-
trary function F by

⟨F⟩US ≡
1

4π

∫
US
dΩP(Ω)F = 1

4π

∫
dϕ

∫ 1

0
dµP(Ω)F ,

(6.48)

⟨F⟩LS ≡ −
1

4π

∫
LS
dΩP(Ω)F = 1

4π

∫
dϕ

∫ −1

0
dµP(Ω)F .

(6.49)

In the twostream convention we insert the minus
sign in the LS definition so that downward quantities
are positive; note, therefore, that

⟨F⟩ = ⟨F⟩US − ⟨F⟩LS. (6.50)

The upwardemitted flux from the atmosphere is
obtained by weighting the intensity with the upward
directional cosine and integrating over the upper
hemisphere:

F+ =
∫

US
dΩµP(Ω) Iν(Ω) = 4π

⟨
µ Iν(Ω)

⟩
US,

(6.51)

where we may write Iν(Ω) = Iν(µ).
If the scattering is isotropic, P(Ω) = 1, and the

azimuthal dependence of the intensity can be ne-
glected, this reduces to

F+ = 2π
∫ 1

0
dµµ Iν(µ). (6.52)

Direct solution without scattering and
the transmission function
When there is no scattering (ω0 = 0), and if we ne-
glect the azimuthal dependence so that the intensity
depends only on µ (i.e., Iν(Ω) = Iν(µ)), equation
(6.47) can be solved analytically for Iν(µ) by multi-
plying both sides by e−τ/µ and integrating. Namely,

d

dτ

(
Iν(τ, µ)e−τ/µ

)
= −

Bν

(
T (τ)

)
µ

e−τ/µ. (6.53)

Consider a single atmospheric layer as in Fig. 6.3,
and denote the intensity at the bottom and top of
the layer by Iν(τ1, µ) = I1(µ) and Iν(τ2, µ) = I2(µ),
respectively. From (6.53) we obtain

I1(µ) = I2(µ) e−∆τ/µ + 1
µ

∫ τ2

τ1

dτ Bν

(
T (τ)

)
e−(τ−τ1)/µ,

(6.54)

where ∆τ = τ2 − τ1. Multiplying by 2πµ and inte-
grating over the upper hemisphere gives the upward
flux from the top of the layer F+,1:

F+,1 = 2π
∫ 1

0
dµµ I1(µ) (6.55)

= 2π
∫ 1

0
dµ I2(µ)µ e−∆τ/µ

+
∫ τ2

τ1

dτ π Bν

(
T (τ)

)
G(τ − τ1), (6.56)

G(τ) ≡ 2
∫ 1

0
dµ e−τ/µ. (6.57)
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This expression is fairly transparent: the upward
flux emerging from the top consists of the upward
intensity incident from below, attenuated by e−∆τ/µ

and integrated over the upper hemisphere with the
µ weight, plus the layers own thermal emission, each
contribution being attenuated on its way to the top
by the factor G(x) (see Fig. 6.4). In particular, if we
take the top of the atmosphere as the upper bound-
ary (i.e., τ1 = 0) and neglect radiation from below
(set Iν2 = 0), equation (6.55) reduces to

F+,1 =
∫ ∞

0
dτ π Bν

(
T (τ)

)
G(τ). (6.58)

Figure 6.3:

Figure 6.4: Transmission function for the pureab-
sorption case.

Approximation via Moment Closure

(e.g., see Meadow & Weaver 80 [17] and Toon et al.
1989 [23]). First, for the upper hemisphere (US) and
lower hemisphere (LS), define the zeroth moment

(mean intensity)

Jν+ ≡ ⟨Iν⟩US (6.59)
Jν− ≡ ⟨Iν⟩LS (6.60)

and the first moment,

Hν+ ≡ ⟨µIν⟩US (6.61)
Hν− ≡ ⟨µIν⟩LS (6.62)

while the upward and downward fluxes are

F+ = 4πH+ (6.63)
F− = 4πH− (6.64)

respectively.
The radiative transfer equations are

d

dτ
⟨µIν(Ω)⟩US

= ⟨Iν(Ω)⟩US − ω0⟨µ⟩USJν − (1− ω0)⟨µ⟩USBν

(6.65)
d

dτ
⟨µ2Iν(Ω)⟩LS

= ⟨µIν(Ω)⟩LS − ω0⟨µ⟩LSJν − (1− ω0)⟨µ⟩LSBν

(6.66)

Hence, since ⟨µ⟩US = −⟨µ⟩LS = 1/2,

d

dτ
⟨µIν(Ω)⟩US = ⟨Iν(Ω)⟩US −

ω0

2
Jν −

(1− ω0)
2

Bν

(6.67)
d

dτ
⟨µIν(Ω)⟩LS = ⟨Iν(Ω)⟩LS + ω0

2
Jν −

(1− ω0)
2

Bν

(6.68)

Here, using Jν = Jν+ − Jν− and adopting the
closure relations

η+ = Jν+/Hν+ (6.69)
η− = −Jν−/Hν− (6.70)

we obtain

Ḣν+ = η+

(
1− ω0

2

)
Hν+ −

ω0

2
Hν− −

(1− ω0)
2

Bν

(6.71)

Ḣν− = η+ω0

2
Hν+ − η−

(
1− ω0

2

)
Hν− + (1− ω0)

2
Bν

(6.72)
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or, equivalently,

Ḟ+ = η+

(
1− ω0

2

)
F+ − η−ω0

2
F− − 2π(1− ω0)Bν

(6.73)

Ḟ− = η+ω0

2
F+ − η−

(
1− ω0

2

)
F− + 2π(1− ω0)Bν

(6.74)

If we assume the closure relations for the upper
and lower hemispheres have the same form, then
η+ = η− ≡ η, and

Ḟ+(τ) = γ1F
+(τ)− γ2F−(τ)− 2π(1− ω0)Bν(τ)

(6.75)
Ḟ−(τ) = γ2F

+(τ)− γ1F−(τ) + 2π(1− ω0)Bν(τ)
(6.76)

where we have set

γ1 ≡ η
(

1− ω0

2

)
(6.77)

γ2 ≡
η ω0

2
(6.78)

so that γ1 + γ2 = η and γ1 − γ2 = η(1− ω0).
Equations (6.75,6.76) form a system of first-order

coupled differential equations, i.e., a homogeneous
system augmented by τ -dependent terms originating
from Bν(τ). Therefore, by Taylor-expanding Bν(τ)
and approximating it with a truncated finite poly-
nomial, one can obtain solutions.

Choosing γ1 = 2 − ω0 and γ2 = ω0 recovers the
hemispheric-mean approximation with asymmetry
parameter g = 0 [23]. To solve Eqs. (6.75) and
(6.76), define new quantities Fsum ≡ F+ + F− and
Fnet ≡ F+ − F−; rewriting yields

Ḟnet = (γ1 − γ2)Fsum − 4π(1− ω0)Bν (6.79)
Ḟsum = (γ1 + γ2)Fnet, (6.80)

from which the second-order equation

F̈sum − (γ2
1 − γ2

2)Fsum + 4π(1− ω0)(γ1 + γ2)Bν = 0.
(6.81)

is obtained.
Let us retain only the first-order term in the Tay-

lor expansion of Bν with respect to τ [23] [7]:

Bν ≈ B0 + Ḃ(τ − τ0). (6.82)

In this case, the solutions are

Fsum = c1e
λτ + c2e

−λτ + 4π(1− ω0)
γ1 − γ2

Bν (6.83)

Fnet = c1δe
λτ − c2δe

−λτ + 4π(1− ω0)
γ2

1 − γ2
2

Ḃν , (6.84)

where

λ ≡
√
γ2

1 − γ2
2 (6.85)

δ ≡
√
γ1 − γ2

γ1 + γ2
. (6.86)

Substituting the above back into F+ and F− gives

F+(τ) = c1ζ+e
λτ + c2ζ−e

−λτ + πB+(τ) (6.87)
F−(τ) = c1ζ−e

λτ + c2ζ+e
−λτ + πB−(τ) (6.88)

where

B±(τ) ≡ 2(1− ω0)
γ1 − γ2

(
Bν(τ)± 1

γ1 + γ2
Ḃν(τ)

)
(6.89)

ζ± ≡
1
2

(1± δ). (6.90)

The ζ± are called the coupling coefficients [7].

Solving Radiative Transfer in an Atmo-
spheric Layer Model
Up to this point we have derived the hemispheric-
mean two-stream approximation, but the solutions
for the upward and downward streams in the
Toon89-type two-stream approximation can be writ-
ten in the same form:

F+(τ) = c1ζ
+eλτ + c2ζ

−e−λτ + πB+(τ) (6.91)
F−(τ) = c1ζ

−eλτ + c2ζ
+e−λτ + πB−(τ) (6.92)

Here, ζ± are called the coupling coefficients. No-
tably, the two-stream approximation in the spherical
harmonics (SH) method takes the same form. We
therefore consider solving radiative transfer for an
atmospheric layer model starting from equations of
this form.

In the above equations, ζ± and λ are related to
the coefficients γ1 and γ2 of the differential equations
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for F± as

ζ± = 1
2

(
1±

√
γ1 − γ2

γ1 + γ2

)
(6.93)

λ =
√
γ2

1 − γ2
2 , (6.94)

The coefficients γ1 and γ2 are determined by the
single-scattering albedo ω and the asymmetry pa-
rameter g, and this relationship depends on the
choice of moment closure [23]. When using the hemi-
spheric mean, the relations γ1 = 2 − ω(1 + g) and
γ2 = ω(1− g) hold. The reduced source function is
expressed as

B±(τ) = 2(1− ω)
γ1 − γ2

(
Bν(τ)± 1

γ1 + γ2
Ḃν(τ)

)
.

(6.95)

In the above expression, the second term can be ne-
glected for an isothermal layer.

Equations (6.91, 6.92) can be written as

F (τ) = Q(τ)x + πB(τ) (6.96)

where F (τ) = (F+(τ), F−(τ))⊤, B(τ) =
(B+(τ),B−(τ))⊤, x ≡ (c1, c2)⊤, and

Q(τ) =
(
ζ+eλτ ζ−e−λτ

ζ−eλτ ζ+e−λτ

)
(6.97)

Next, consider an N -layer model with optical
thickness differences ∆τn, and define the optical
depth at the top of layer n as τ = τn =

∑n−1
i=0 ∆τi

(n ≥ 1) with τ0 = 0.
Consider the n-th layer:

F (τn) = Qn(τn)xn + πBn(τn) = Fn (6.98)
F (τn + ∆τn) = Qn(τn + ∆τn)xn + πBn(τn + ∆τn)

= Fn+1 (6.99)

Here Qn is defined as Q(τ) for the n-th layer. Thus,
once the internal parameters ζ±

n and λn of the n-th
layer are set,

Qn(τ) =
(
ζ+

n e
λnτ ζ−

n e
−λnτ

ζ−
n e

λnτ ζ+
n e

−λnτ

)
. (6.100)

From (6.98) and (6.99), we obtain the linear re-
cursive form

Fn+1 = G(∆τn)Fn + πGn, (6.101)

where

Gn ≡ Bn(τn + ∆τn)− G(∆τn)Bn(τn) (6.102)

and Gn = (G+
n , G

−
n )⊤. We define the transfer func-

tion as

G(∆τn) ≡ Q(τn + ∆τn)Q−1(τn) (6.103)

= Qn(τn)
(
eλn∆τn 0

0 e−λn∆τn

)
Q−1

n (τn)

(6.104)

This is the eigendecomposition G(∆τn)qi = λ′
iqi,

where qi denotes the i-th column vector of Qn(τn).
Therefore, the vectors qi can be normalized; in par-
ticular, q1 can be normalized by eλnτn and q2 by
e−λnτn . By defining

Zn ≡ Qn(0) =
(
ζ+

n ζ−
n

ζ−
n ζ+

n

)
, (6.105)

the above can be rewritten as

G(∆τn) = Zn

(
eλn∆τn 0

0 e−λn∆τn

)
Z−1

n (6.106)

= 1
ζ+

n
2 − ζ−

n
2

×

(
ζ+

n
2
etn − ζ−

n
2
e−tn −ζ+

n ζ
−
n (etn − e−tn)

ζ+
n ζ

−
n (etn − e−tn) ζ+

n
2
e−tn − ζ−

n
2
etn

)
,

(6.107)

where

tn ≡ λn∆τn (6.108)

is a function of ∆τn but not of τn.
For an isothermal layer, Bn(τn) = Bn(τn +∆τ) ≡

Bnu, with Bn = B+(τn) = B−(τn), where u is the
unit vector u ≡ (1, 1)⊤. The source vector Gn can
then be simplified as

Gn = Bn(I − G(∆τn))u (6.109)

= Bn

ζ+
n + ζ−

n

(
ζ+

n (1− etn) + ζ−
n (1− e−tn)

ζ+
n (1− e−tn) + ζ−

n (1− etn)

)
(6.110)

where I is the identity matrix.

63



Transfer within a Single Layer

While the linear form (6.101) is mathematically con-
cise, its physical meaning is not transparent. We
therefore convert it to a form that represents the
transport of radiation within a single layer.

From (6.101) we obtain

F+
n = G−1

11 F
+
n+1 − G

−1
11 G12F

−
n − G−1

11 πG
+
n , (6.111)

where Gij denotes the (i, j) component of G(∆τn)
with the index n suppressed in the symbol. Sub-
stituting this into F−

n+1 = G21F
+
n + G22F

−
n + πG−

n

yields

F−
n+1 = G21G−1

11 F
+
n+1 + (G22 − G21G−1

11 G12)F−
n

+ πG−
n − G21G−1

11 πG
+
n . (6.112)

In the two-stream case, from (6.107) we have
G21 = −G12 and G−1

11 = G22 − G21G−1
11 G12 ≡ Tn as

well as G21G−1
11 = −G−1

11 G12 ≡ Sn. Accordingly, the
radiative transfer within the n-th layer can be writ-
ten as

F+
n = TnF

+
n+1 + SnF

−
n − TnπG

+
n (6.113)

F−
n+1 = TnF

−
n + SnF

+
n+1 + πG−

n − SnπG
+
n , (6.114)

where

Tn ≡
ζ+

n
2 − ζ−

n
2

ζ+
n

2 − (ζ−
n Tn)2

Tn (6.115)

Sn ≡
ζ+

n ζ
−
n

ζ+
n

2 − (ζ−
n Tn)2

(1− T2
n) (6.116)

can be interpreted as the transmittance between the
bottom and top of the layer and the scattering of
flux from the opposite direction, respectively6. In

6If we define the opaque (optically thick) limit of the scat-
tering in (6.116) as S∞ ≡ ζ−/ζ+ for Tn = 0, then (6.117)
can be rewritten in a form analogous to that used in the flux-
adding treatment of [21]:

Tn =
S∞ (1− e−2λn∆τn )
1− S2

∞e−2λn∆τn
. (6.117)

For the hemispheric-mean case, we obtain

S∞ =
√

1− ωg −
√

1− ω
√

1− ωg +
√

1− ω
(6.118)

λn = 2
√

(1− ωg)(1− ω). (6.119)

the above expressions, following [7] we define the
transmission function

Tn ≡ e−λn∆τn . (6.120)

Note that (6.113, 6.114) are essentially the same as
the analytic two-stream expressions derived by [7]7.

For an isothermal layer, (6.113) and (6.114) sim-
plify to

F+
n = TnF

+
n+1 + SnF

−
n + πB̂n (6.121)

F−
n+1 = TnF

−
n + SnF

+
n+1 + πB̂n (6.122)

where

B̂n ≡ (1− Tn − Sn)Bn. (6.123)

flux-adding treatment
As a solution technique for the two-stream approx-
imation including scattering, the flux-adding treat-
ment [20, 21], which utilizes a reflectance form, has
been proposed. It is derived by analogy with the
classical adding method. The flux-adding treatment
assumes that, within a given layer, the upward flux
can be expressed as the sum of the reflection of the
downward flux and a source term from the layer:

F+
n = R̂+

nF
−
n + Ŝ+

n (6.124)
F−

n = R̂−
nF

+
n + Ŝ−

n . (6.125)

Replacing F+
n in (6.121) with (6.124) and multi-

plying by Tn yields

T 2
n F

+
n+1 = (R̂+

n − Sn)TnF
−
n + Tn(Ŝ+

n − πB̂n).
(6.126)

Eliminating F−
n from the above using (6.122) gives

F+
n+1 = R̂+

n − Sn

T 2
n − S2

n + SnR̂
+
n

F−
n+1

+ B̂n(Sn − Tn − R̂+
n ) + TnŜ

+
n

T 2
n − S2

n + SnR̂
+
n

. (6.127)

Let the coefficient of the first term on the right-hand
side be R̂+

n+1 and the second term be Ŝ+
n+1. This

7Equation (3.58) of [7]. In our notation, λn corresponds
to D in [7].
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leads to the following recurrence relations:

R̂+
n = Sn +

T 2
n R̂

+
n+1

1− SnR̂
+
n+1

(6.128)

Ŝ+
n = B̂n +

Tn(Ŝn+1 + B̂nR̂
+
n+1)

1− SnR̂
+
n+1

. (6.129)

In deriving (6.129), (6.128) was used to eliminate
R+

n from the second term in (6.127).
Thus, assuming the reflectivity (i.e., albedo) at

the lower boundary of the bottom layer (n = N −
1), one can compute R̂+

0 and Ŝ+
0 and obtain the

emergent flux at the top of the atmosphere as

F+
0 = R̂+

0 F⋆ + Ŝ+
0 , (6.130)

where F⋆ is the incident stellar flux.
Although R̂−

n and Ŝ−
n are not required to com-

pute the emergent flux, they can also be derived.
Replacing n by n − 1 in (6.122), then using (6.125)
to eliminate F−

n , and further extracting Tn−1F
+
n by

substituting n → n − 1 in (6.121) and inserting it
into the above, we obtain

F−
n−1 = R̂−

n − Sn−1

T 2
n−1 − S2

n−1 + Sn−1R̂
−
n

F+
n−1

+ B̂n−1(Sn−1 − Tn−1 − R̂−
n ) + Tn−1Ŝ

−
n

T 2
n−1 − S2

n−1 + Sn−1R̂
−
n

.

(6.131)

Defining the coefficient of the first term on the right-
hand side as R̂−

n−1 and the second term as Ŝ−
n−1

yields the recurrences

R̂−
n = Sn−1 +

T 2
n−1R̂

−
n−1

1− Sn−1R̂
−
n−1

(6.132)

Ŝ−
n = B̂n−1 +

Tn−1(Ŝn−1 + B̂n−1R̂
−
n−1)

1− Sn−1R̂
−
n−1

. (6.133)

Equations (6.128), (6.129), (6.132), and (6.133)
are essentially the same as Eqs. (7), (8), (4), and
(5) of [20].

As seen above, in the flux-adding treatment one
can formulate and solve recurrence relations by in-
cluding scattering as the sum of an effective reflec-
tion and a source term for each layer. Likewise, by
including scattering as the sum of an effective trans-
mission and a source term for each layer, alterna-
tive recurrences can be formulated. Although we

have not yet identified a practical advantage of this
method, it is a natural flux-based extension of pure
absorption and is of theoretical interest.

6.5 Practical Methods for
Opacity Calculations‡

In atmospheric retrieval, opacity calculations often
dominate both accuracy and computational speed.
Here, we introduce representative methods for opac-
ity computation.

Direct Calculation
The cross section of the l-th line of the m-th
molecule can be expressed as

σm,l(ν) = Sm,lgV(ν − ν̂, β, γL) (6.134)

= Sm,l√
2πβ

H

(
ν − ν̂√

2β
,
γL√
2β

)
, (6.135)

where Sm,l is the line strength and gV(ν, β, γL) is the
Voigt function. ν̂ is the line center. The Voigt func-
tion can be written as the convolution of a Lorentz
profile and Doppler broadening:

gV(ν, β, γL) = gL(ν, γL) ∗ gD(ν, β) (6.136)

where

gL(ν, γL) = γL/π

ν2 + γ2
L

(6.137)

gD(ν, β) = N (0, β). (6.138)

Note that β is the standard deviation of Doppler
broadening, with the relation β = γD/

√
2 log 2. The

function H(x, a) is the Voigt–Hjerting function [8],
defined as

H(x, a) = a

π

∫ ∞

−∞

e−y2

(x− y)2 + a2 dy. (6.139)

The Voigt-Hjerting function is the real part of the
Faddeeva function w(z) = exp (−z2) erfc(−iz) with
z = x+ ia ∈ C:

H(x, a) = Re[w(x+ ia)]. (6.140)

In Python, the Faddeeva function w(z) is widely
used through wofz (“w of z”), which is based on
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Algorithm 680 of the Transactions of Mathematical
Software [18].

As an alternative form of the Voigt–Hjerting func-
tion, the following formulation by Zaghloul and Ali
[25] is also frequently used:

ĤM (x, a) = e−x2
erfcx(a) cos (2xa)

+ 2ηx sin (ax)
π

e−x2
sinc(ax/π)

+ 2η
π

{
−a cos (2ax)Σ1 + a

2
Σ2 + a

2
Σ3

}
,

(6.141)

where

Σ1 =
M∑

n=1

(
1

η2n2 + a2

)
e−(η2n2+x2) (6.142)

Σ2 =
M∑

n=1

(
1

η2n2 + a2

)
e−(ηn+x)2

(6.143)

Σ3 =
M∑

n=1

(
1

η2n2 + a2

)
e−(ηn−x)2

, (6.144)

and erfcx(x) = 2π−1/2ex2 ∫∞
x
e−t2

dt is the scaled
complementary error function. η ≤ 1 is a control
parameter, and η = 0.5 is commonly adopted8.

Multi-Line Cross Section Synthesis via
Discrete Integral Transform
The method based on the Discrete Integral Trans-
form (DIT) was proposed by van den Bekerom and
Pannier [24] to efficiently compute the cross sections
of a large number of lines. In the DIT approach,
instead of summing over each absorption line di-
rectly, the calculation is reformulated as an integra-
tion in parameter space using the line-shape density
(LSD), S(ν̂, β, γL), and then discretized for evalua-

8When M →∞, the Voigt–Hjerting function is recovered.
In practice, however, truncation at a suitable integer is neces-
sary. The above expression approximates well for |x| ≲ M/2,
while for |x| > M/2 it rapidly approaches zero. In ExoJAX ,
we adopt M = 27, and for |x| > M/2 we use the asymptotic
form of the Faddeeva function:

wasy
n (z) =

i

z
√

π
(1 + α̃(s0 + α̃(s1 + · · · α̃(sn) · · · )) , (6.145)

where α̃ ≡ 1/2z2, and the real part is taken as a substitute.

tion. That is,

σ(ν) =
∑

l

SlV (ν − ν̂l, βl, γL,l) (6.146)

=
∫
dν̂

∫
dβ

∫
dγLS(ν̂, β, γL)gV(ν − ν̂, β, γL)

(6.147)

≈
∑
jhk

SjhkgV(νi − ν̂j , βh, γL,k) (6.148)

In the original DIT, each line is stored in the three-
dimensional grid S(νj , βh, γL,k) weighted by its line
strength. Here, the Voigt function can be expressed
as

σ(νi) =
∑
hk

FT−1[FT(Sjhk)FT(gV(ν̂j , βh, γL,k))]

(6.149)

σ(νi) =
∑
hk

FT−1[FT(Sjhk)FT(gD)FT(gL)]

(6.150)

where the Fourier transforms of gD and gL are writ-
ten simply as

FT(gD) = e−2(πβk)2
(6.151)

FT(gL) = e−2πγL|k|. (6.152)

Although omitted here, since DIT relies on
Fourier transforms, it is necessary to take care to
avoid aliasing effects9.

Correlated k-Distribution Method
The correlated k-distribution method (CKD) traces
back to the 1960s, when Malkmus introduced the
probability distribution of absorption coefficients
and proposed the k-distribution method to aver-
age molecular band absorption [16]. Later, in 1989,
Goody et al. introduced the idea of rearranging k
values so that spectral ordering is preserved even
in vertically inhomogeneous atmospheres, which be-
came the core of the “correlated” k-distribution
method [5]. In 1991, Lacis & Oinas organized its

9DIT uses a grid in wavenumber space, but in astronomi-
cal applications it is more convenient to adopt a logarithmic
wavenumber grid, which naturally incorporates radial velocity
shifts. In this case, when temperature is fixed, the Doppler
width for the same isotope becomes universal across lines,
allowing the LSD dimension to be reduced by one. This mod-
ified version of DIT is called MODIT.
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implementation into the radiative transfer equation
and verified its accuracy, establishing it as a stan-
dard technique in climate models and planetary at-
mosphere calculations [14]. Good references on cor-
related k-distributions include [1].

k-Distribution
The cross section σ(ν) (or opacity), when viewed
over a spectral region broader than the line width,
is a non-injective function. That is, there exist mul-
tiple ν values corresponding to the same σ′ = σ(ν)
(Fig. 6.5, left). This non-injectivity increases as the
wavelength range broadens. Therefore, it is natural
to consider describing the information not in terms
of ν, but in terms of the values of σ.

For example, consider integrating a nonnegative
function f(σ(ν)) ≥ 0 over some wavenumber range.
In a Riemann integral this is written as

I =
∫ max

min
f(σ(ν))dν ≈

∑
i

f(σ(νi))∆νi. (6.153)

Here, the integration domain is divided in the ν di-
rection. However, as non-injectivity increases, one
must sum over the same σ values many times. Thus,
it is useful to consider integration with respect to the
measure of the range instead.

Now, divide the range into disjoint sets. Let Aj

be the set of ν values whose range lies within a small
region ∆σ around σ = σj . The range can then be
expressed as

V =
n∪

j=0
Aj . (6.154)

Using the characteristic function of set A,

χA(ν) =

{
1, if ν ∈ A
0, if ν /∈ A,

(6.155)

we consider the (nonnegative) simple function

s(ν) =
n∑
j

fjχAj
(ν), (6.156)

where 0 ≤ f0 < f1 < · · · < fn. The Lebesgue
integral is defined as∫

V

s(ν)dν =
n∑

j=0
fj md(Aj), (6.157)

where md(Aj) is the measure of Aj . Applying this
idea, we divide the range into bins from minimum to
maximum and index them as j = 0, 1, · · · , assigning
representative values σj . Approximating f(σ(ν)) by
a simple function,

f(σ(ν)) ≈ s(ν) =
n∑
j

f(σj)χAj
(ν), (6.158)

we obtain∫
V

f(σ(ν))dν ≈
∫

V

s(ν)dν =
∑

j

f(σj)∆mj

(6.159)

= (νmax − νmin)
∑

j

f(σj)∆gj ,

(6.160)

where ∆mj = (νmax − νmin)∆gj is the measure of
each set.

The final expression can be viewed as an approxi-
mation to the (Riemann) integral

(νmax − νmin)
∫ 1

0
f(σ(g))dg, (6.161)

and becomes exact in the limit of infinite refinement:∫
V

f(σ(ν))dν = (νmax − νmin)
∫ 1

0
f(σ(g))dg.

(6.162)

Here, σj corresponds to bins taken from smaller
to larger values, and ∆mj represents the measure
of the domain corresponding to these bins, i.e., the
length of the ν space. Practically, σ(g) is obtained
by sorting a finely sampled table of σ(ν) and nor-
malizing it to [0, 1]. Figure 6.5 (right) shows σ(g)
obtained in this wayessentially the cumulative dis-
tribution function of σ. Since it is based on sorting,
it is a monotonically increasing function. The name
“k-distribution” originates from using opacity (com-
monly denoted k) in this distribution function.

The shaded regions in Fig. 6.5 illustrate the con-
tribution from ∆gj when f(σ) = σ, shown in ν-f
space (left) and g-f space (right). In the left panel,
∆mj corresponds to the sum of the shaded lengths
along the ν axis. Dividing by (νmax − νmin) yields
∆gj , shown in the right panel.

Once σ(g) is obtained by sorting, the evaluation of
the right-hand side of Eq. (6.162) can be performed
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using standard numerical integration methods such
as Gauss-Legendre quadrature.

So far we considered a single-layer integral, but in
radiative transfer the opacity differs layer by layer,
and integration must be performed over wavenum-
ber. If this can be replaced by integration over sets
∆gj , significant computational savings are possible
in highly non-injective cases. In other words, the or-
ange regions in the left panel of Eq. (6.162) can be
grouped as having similar opacity, allowing radiative
transfer to be solved collectively.

However, this requires that the ν sets correspond-
ing to ∆gj be identical across layers. Such an as-
sumption is called comonotonicity: if the ordering
of ν remains consistent when sorted by range (σ),
then it holds regardless of how ∆gj is chosen. The
“correlation” in the correlated k-distribution method
refers to this assumption of comonotonicity between
layers. In terms of copulas, this is equivalent to as-
suming the Fréchet – Hoeffding upper bound.

Figure 6.6 illustrates ∆gj under varying temper-
ature and pressure. As seen in this example, while
the sets align well around the line centers, the agree-
ment worsens in the wings.
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Figure 6.5: Left: Cross section of water shown in wavenumber space. Right: The same cross section
represented in g-space. The orange region corresponds to the cross section belonging to the interval
g = 0.6− 0.7 (∆gi) in g-space.

Figure 6.6: Left: Cross sections in g-space corresponding to g = 0.6− 0.7 (∆gi) are shown in orange when
temperature is varied between 700, 1000, and 1300 K at p = 0.1 bar. The same ∆gi as in Fig. 6.5 is
adopted. Right: Cross sections corresponding to the same ∆gi are shown in orange when temperature is
fixed at 1000 K and pressure is varied between 0.01, 0.1, and 1 bar.
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Textbooks
For Bayesian estimation, the standard reference is Gelman
et al.’s Bayesian Data Analysis (BDA; Morikita Publishing).
Kevin P. Murphy’s Probabilistic Machine Learning offers an
even more comprehensive treatment of key topics.
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