REACH

Scientific Overview of Extremely High-Contrast Spectroscopy at the Subaru Telescope

Hajime Kawahara (U Tokyo) REACH collaboration

Sebastien Vievard

Olivier Guyon

Julien Lozi

The first real **1** spectrum by REACH in Oct 16th (2019) Nemanja Jovanovic

Ananya Sahoo

Masato Ishizuka

Takayuki Kotani

HRS detection of molecules in planetary atmosphere

Transmission CO (Snellen+2010), Metals (Hoeijmakers+) Emission CO (Brogi+2012 etc.), H2O (Birkby+2013) TiO (Nugroho, *H.K.*+2017), HCN (Cabot+2019) Imaging CO, H2O (Konopacky+2013, Snellen+2014, Hoeijmakers+)

HRS with Coronagraph? No scientific results yet

e.g) <u>Kawahara</u>, Murakami, Matsuo, <u>Kotani</u>, ApJS 212, 27 (2014), "Spectroscopic Coronagraphy for Planetary Radial Velocimetry of Exoplanets" Snellen+2015, <u>Jovanovic</u>+2017, Wang+2017, also Sparks & Ford 02

REACH: HCI (SCExAO) + HRS (IRD) since 2014

High Dispersion Coronagraph (HDC or HRS–C) by REACH project

Select your favorite (or no) coronagraph (Lyot, 8oct, vortex so on) in SCExAO

The REACH multicore fiber has 7 ports. Select two inputs to IRD.

Available Y, J, and H with R = 100,000 thanks to SMF

Advanced option I: You can use I in 2 fibers for laser comb.

Advanced option 2: The REACH monitoring camera for speckle nulling.

Target: Spectroscopic Binary (SBI) HIP18413

The lines from a companion was unavailable (SBI).

HRS with No Coronagraph by REACH

We got a spectrum of a companion D, completely separated from A! REACH reveals HIP18413B is early-mid M.

High S/N spectrum in 10 min exposure for a M-type companion at 23 pc

HIP | 84|3

Relative RV ~ 0km/s > more precise CCF analysis is needed > dynamical masses of the stars

High S/N spectrum in 10 min exposure for a M-type companion at 23 pc

HIP | 84|3

Relative RV ~ 0km/s > more precise CCF analysis is needed > dynamical masses of the stars

High S/N spectrum in 10 min exposure for a M-type companion at 23 pc

HIP | 84|3

Relative RV ~ 0km/s > more precise CCF analysis is needed > dynamical masses of the stars

Science case #1: Precise Radial Velocimetry of a Companion Star

REACH can reach hidden nearby M-type targets for precise radial velocity survey with laser frequency comb

Planet around a binary companion Dynamical mass of a companion Dynamical planet mass

Planet in the HZ around a companion

- Complex climate?
- > New survey space

Science case #2: HRS-C for cool directly imaged planets

•Migration injects oxygen in atmosphere

H2O rich atmosphere

Ready for targets with low-contrast whose image is visible at raw level (HRS-NC). But, planet characterization (HRS-C) is much more challenging.

We need more tests for the HRS-C mode.

- I. We need to inject the light based on positions computed from the orbit,
- 2. Which coronagraph is the best for the HRS-C observation?
- 3. Telluric removal technique (use another fiber close to a host star?)
- 4. Accuracy of line list. Always problematic for the HRS analysis. Help us!

REACH = HCI+HRS on Subaru (y,J,H,R=100,000, northern hemisphere)or one of the junks on Howl's moving castle

Science cases: planet molecules, precise RV of a companion, disk science, and <u>your science</u>

Complementary to KPIC (K,L,M) and HiRISE (southern hemisphere) Open use for S20B? (planned)