Computing CO cross section using HITRAN (opacity calculator = LPF) ------------------------------------------------------------------ This tutorial demonstrates how to compute the opacity of CO using HITRAN step by step, not using ``opa``. .. code:: ipython3 from jax import config config.update("jax_enable_x64", True) .. code:: ipython3 from exojax.spec.hitran import line_strength, doppler_sigma, gamma_hitran, gamma_natural from exojax.spec import api import numpy as np import matplotlib.pyplot as plt plt.style.use('bmh') First of all, set a wavenumber bin in the unit of wavenumber (cm-1). Here we set the wavenumber range as :math:`1000 \le \nu \le 10000` (1/cm) with the resolution of 0.01 (1/cm). We call moldb instance with the path of par file. If the par file does not exist, moldb will try to download it from HITRAN website. .. code:: ipython3 # Setting wavenumber bins and loading HITRAN database nu_grid = np.linspace(2000.0, 2150.0, 150000, dtype=np.float64) #cm-1 isotope = 1 mdbCO = api.MdbHitran('CO', nu_grid, isotope=isotope, gpu_transfer=True) Define molecular weight of CO (:math:`\sim 12+16=28`), temperature (K), and pressure (bar). Also, we here assume the 100 % CO atmosphere, i.e. the partial pressure = pressure. .. code:: ipython3 mean_molecular_weight=28.0 # molecular weight Tfix=1000.0 # we assume T=1000K Pfix=1.e-3 # we compute P=1.e-3 bar Ppart=Pfix #partial pressure of CO. here we assume a 100% CO atmosphere. partition function ratio :math:`q(T)` is defined by :math:`q(T) = Q(T)/Q(T_{ref})`; :math:`T_{ref}`\ =296 K Here, we use the partition function in mdb .. code:: ipython3 qt=mdbCO.qr_interp(isotope,Tfix) Let us compute the line strength S(T) at temperature of Tfix. :math:`S (T;s_0,\nu_0,E_l,q(T)) = S_0 \frac{Q(T_{ref})}{Q(T)} \frac{e^{- h c E_l /k_B T}}{e^{- h c E_l /k_B T_{ref}}} \frac{1- e^{- h c \nu /k_B T}}{1-e^{- h c \nu /k_B T_{ref}}}= q_r(T)^{-1} e^{ s_0 - c_2 E_l (T^{-1} - T_{ref}^{-1})} \frac{1- e^{- c_2 \nu_0/ T}}{1-e^{- c_2 \nu_0/T_{ref}}}` :math:`s_0=\log_{e} S_0` : logsij0 :math:`\nu_0`: nu_lines :math:`E_l` : elower Why the input is :math:`s_0 = \log_{e} S_0` instead of :math:`S_0` in SijT? This is because the direct value of :math:`S_0` is quite small and we need to use float32 for jax. .. code:: ipython3 Sij=line_strength(Tfix,mdbCO.logsij0,mdbCO.nu_lines,mdbCO.elower,qt,mdbCO.Tref) Then, compute the Lorentz gamma factor (pressure+natural broadening) :math:`\gamma_L = \gamma^p_L + \gamma^n_L` where the pressure broadning :math:`\gamma^p_L = (T/296K)^{-n_{air}} [ \alpha_{air} ( P - P_{part})/P_{atm} + \alpha_{self} P_{part}/P_{atm}]` :math:`P_{atm}`: 1 atm in the unit of bar (i.e. = 1.01325) and the natural broadening :math:`\gamma^n_L = \frac{A}{4 \pi c}` .. code:: ipython3 gammaL = gamma_hitran(Pfix,Tfix, Ppart, mdbCO.n_air, \ mdbCO.gamma_air, mdbCO.gamma_self) \ + gamma_natural(mdbCO.A) Thermal broadening :math:`\sigma_D^{t} = \sqrt{\frac{k_B T}{M m_u}} \frac{\nu_0}{c}` .. code:: ipython3 # thermal doppler sigma sigmaD=doppler_sigma(mdbCO.nu_lines,Tfix,mean_molecular_weight) Then, the line center… In HITRAN database, a slight pressure shift can be included using :math:`\delta_{air}`: :math:`\nu_0(P) = \nu_0 + \delta_{air} P`. But this shift is quite a bit. .. code:: ipython3 #line center nu0=mdbCO.nu_lines #Use below if you wanna include a slight pressure line shift #nu0=mdbCO.nu_lines+mdbCO.delta_air*Pfix ExoJAX contains several opacity calculators. The most primitive one is Direct LPF (line profile). You can use OpaDirect for Direct LPF, but here we manually call functions used in Direct LPF. Each of these opacity calculators requires unique initial information. ``spec.initspec`` module contains the initialization procedures for the calculators. .. code:: ipython3 from exojax.spec.initspec import init_lpf from exojax.spec.lpf import xsvector numatrix = init_lpf(mdbCO.nu_lines, nu_grid) xsv = xsvector(numatrix, sigmaD, gammaL, Sij) Plot it! .. code:: ipython3 fig=plt.figure(figsize=(10,3)) ax=fig.add_subplot(111) plt.plot(nu_grid,xsv,lw=0.5,label="exojax") plt.yscale("log") plt.xlabel("wavenumber ($cm^{-1}$)") plt.ylabel("cross section ($cm^{2}$)") plt.legend(loc="upper left") plt.savefig("co_hitran.pdf", bbox_inches="tight", pad_inches=0.0) plt.show() .. image:: opacity_files/opacity_21_0.png .. code:: ipython3 fig=plt.figure(figsize=(10,3)) ax=fig.add_subplot(111) plt.plot(1.e8/nu_grid,xsv,lw=1,label="exojax") plt.yscale("log") plt.xlabel("wavelength ($\AA$)") plt.ylabel("cross section ($cm^{2}$)") plt.xlim(47000.,47500) plt.legend(loc="upper left") plt.savefig("co_hitran.pdf", bbox_inches="tight", pad_inches=0.0) plt.show() .. image:: opacity_files/opacity_22_0.png